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Introduction

The triangle explosion
We are in an explosion of science and it starts with a triangle.

It has all been in a historical instant of a few hundred or a couple of thousand years. That is an eye-
blink in human history and a lightning-flash in geological time. European Renaissance and Enlightenment
periods are even more recent, just about 400 or 500 years ago.

There is an embarrassing 1500 years of time-out for the Middle Ages, but our story begins with
Babylonian and Greek civilizations and the first recorded mathematical science including geometry of
Pythagoras (~500BC) and Euclid (~300BC). L.ittle evidence exists for higher math and science before that.

The 1500-year interruption after the burning of the libraries of Alexandria was a resumption of human
business-as-usual, that is, fear, superstition, and feudal government by warlords. Thinking for yourself was
an activity that was likely to get you “fired” and that didn’t mean just a pink slip!

You and your books got burned, literally.

During the European time-out the Middle Eastern and Arabic cultures flourished. They studied things
saved from Babylonian and Greek geometry and made the first recorded development of algebra. Sadly, the
Arabic cultures resumed business-as-usual just before Europe began its renaissance. Since then the Middle
East remains in an unreasonable condition we see it today.

Also, during the European time-out, repositories of Babylonian and Greek culture were studied in
monasteries of various Catholic sects. One notable scholarly monk is William of Ockham (~1285-1349) now
known for Occam’s razor. He wrote, “Pluralitas non est ponenda sine neccesitate” (Plurality should not be
assumed without necessity). 1t’s good advice.

Occam might be paraphrased, ““Keep it simple and make it powerful!”” It’s a logical idea of geometry
and, indeed one may argue, of all science, mathematical or otherwise. It asks to begin a study of anything by
first and finally collecting the smallest set of axioms that one needs to proceed.

Occam’s razor is supposed find ways to cut down any axiom set or sine qua non (without which
there is nothing). It is amazing that such a “cutting” idea actually works! Perhaps, by reducing logical clutter
we hack away unknowns and clear the way for new stuff. But, there is more to it than that.

By allowing thought to be driven by a need to undermine its premises, one is following a thought path
that grows geometrically. An exponential explosion of science and mathematics results. Of course, Occam’s
idea was heresy and he was nearly “fired.” Copernicus, Galileo, Bruno (who was burned at the stake), and
others followed similar thought progression. Hacking sacred Churchly axioms or mythos is always trouble.

Occam says, “Hack the axioms to save man.” The Church says, “Hack the man to save axioms.”
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Logos vs. mythos

The battle between logos and mythos may be seen as a battle between portions of the human brain. An
evolution through millions of years is seen in a magnetic resonance image (MRI) that shows the lower limbic
(picean, reptilian, mammalian) lobes (LLL) below higher cerebral lobes (HCL). Little in the higher brain is
fully functional at birth while the LLL “boots from the box.”

In fact, getting HCL up and running is at least a 20-year process called education and often a painful
one. Most of our feelings of comfort and love are stimulated by the unconscious LLL and that goes double for
feelings of fear, hatred and anger. The latter had proportionally greater survival value during countless
millennia of animal and human evolution. Failure to educate ends in synaptic mylenination, an atrophy of
unused HCL circuits. This is not good in school but just fine working for a local warlord.

Knowing a little history and physiology helps to understand how anger is generated by scientific
reasoning in spite of reason’s obvious gifts. One understands an angry Martin Luther blurting, “That fool,
Copernicus...” and sees why they forced Galileo to recant his logic and observations. Luther may have
expressed it as succinctly as possible. His LLL explaterated the following in The Lies of the Jews (1433).

“Die verfluchte hure, vernunft.” (That damned whore, reason.)

So, childish make-believe is just human business-as-usual as Al Gore, 2007 Peace Nobelist, explains in
Assualt on Reason (2005). Chris Mooney’s Republican War on Science (2004) adds further details.
Science priests
To win any “war” for scientific reason it is necessary to empower more thinking people with effective
educational tools. This is something that scientists have largely failed to do. It is much easier to behave like a
priest and say, “Trust me.” Many popular theoretical physics books leave readers more mystified than
educated and more discouraged than enlightened. Quite a few textbooks suffer similarly.

What’s the difference

This book is different since it is a geometric approach to physics that allows you practice it starting
with just a ruler & compass. (See Weapons of Math Instruction on the following pages.) Most important, is
how this lets you check the math. Modern theory is great but it is always the source and development of
ideas that is the most important idea of all. Ideas wax and wan. Idea development is a forever thing.

We will begin with ruler & compass reconstructions of car crashes to show symmetry principles that
are key to classical mechanics. Symmetry principles, which I call grown-up-geometry provide doorways from
classical mechanics to quantum mechanics, the currently reigning theory of our world. We use thought
experiments and classical analogy to understand quantum and relativistic reality.

So we start by understanding car-crashes and work up to understanding photon-crashes.
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The weapons of math instruction
When you’ve got a tough job you use all the tools you can find. We use tools listed below. (See

Figure.) Each has advantages and disadvantages. There’s no magic do-all “Swiss-Army knife” for physics.

Toolbox 1: Euclidian plane geometry (Rule and compass)

Note that Toolbox 1 has a rule not the ruler. That’s in Toolbox 2. A rule is just a straightedge, a ruler
without its inch or mm scale. Euclid’s pretty strict about this. Formal plane geometry is kind of a game to see
how much you can do drawing lines and circles with just these tools. And a pencil...did | forget the pencil?
With an eraser, too. Very useful!

Toolbox 1 has limitations, at least by the formal rules of Mr. Euclid. You may have heard that you
can’t trisect an angle as Mr. Euclid wants it done, formally and exactly in a finite number of steps. When

necessary, we’ll do this and other “illegal’” moves approximately and in a finite number of steps.

Toolbox 2: Navigational geometry (Set 1+ protractor, ruler, divider, parallel rule)

These were the tools used by the Portuguese, Spanish, Dutch, French, and English navigators who
were at least indirectly responsible for many of us living in the American continent. These tools were also

used by weekend sailors until the Global Positioning System made all but a six-pack obsolete.

Toolbox 3: Analytic geometry (Set 2+ graph paper, algebra, calculus, calculator)

The idea is not to discard algebra and other such formalisms but to understand them better. So one of
the first things we do with each geometric graph is figure it out using algebra. This is called analytic geometry
and is one of the quickest ways to understand calculus and its application to physics. This leads to complex
algebra and geometry that is very important to physics. As a crutch for the arithmetically and algebraically

challenged we include scientific calculators. (Most of these have complex algebra capability.)

Toolbox 4: Computer geometry (Set 3+ high resolution graphics, C++ etc.)

This is the “open” class of geometric analysis, and anything goes. A modern scientist without
graphics programming is at a disadvantage. Current languages of greatest general usage, speed, and power are
C™ and Objective C used to write simulations Bouncelt, Bandlt, etc. for this book. High-level languages such as

Maple™, Mathematica™ are fine, too, though often they are jacks-of-all-trades and masters-of-few.

Toolbox 5: You

This is challenging stuff. Doing it will seem hard sometimes. Rome was not built in a day and neither
was any understanding of Nature. So this book depends most on how much you like thinking and doing.

Ignorance about science is not a burden you must accept. It is a challenge you should overcome.
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The Weapons of Math Instruction

(a) Toolbox 1. Euclidian Geometry

parallel rule, ruler, and protractor

(c) Toolbox 3. Analytical geometry

Graph paper and calculator
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Complex algebra and calculus
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(d) Toolbox 4. Computer geometry...Anything goes!
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Sketch of book units
Unit 1 introduces classical mechanics of momentum and energy by geometry and symmetry while previewing

subjects to come. Geometric approaches are direct and powerful so effects like super-elastic bounce and
supernoval explosion can be analyzed by car-crash “slide-rules.” We introduce potential energy by oscillator
and Coulomb models of Earth inside and out and construct elliptic orbits of a “neutron-starlet” by ruler &
compass. The ellipse geometry then leads to an elegant development of resonance and beats in Unit 2, that is,
in turn, a precursor to understanding relativity and quantum waves in Unit 3.

An ancient war machine called the trebuchet or ingenium is discussed near the end of Unit 1. The
trebuchet is a super-catapult used between 3000 BC in China and 1500 AD that duplicates the human
motions of throwing, reaping, chopping, and digging that built our culture. It also instructively models the
motions used in modern sports of baseball, tennis, and golf while showing how one may improve one’s swing
in any such sport (and ring the bell at the fair!)

Unit 2 introduces the concept of resonance, an alternative view of nature to the brutish bashing of
particles seen in Unit 1. As we learn about fundamental processes it appears that Nature uses persuasion or
resonance rather than so many punches. The concept of the oscillator phase and phasor-clock is introduced
along with the mechanics of wave motion. The geometry of phasor clocks is used to introduce complex
Fourier analysis discretely. Geometry again provides inside views of concepts often left unseen.

Unit 3 begins with light, a most common wave but most difficult to observe. Ancient geometry and
Occam’s razor are used on Einstein’s postulate of light speed c. There results a new way to see relativity and
quantum mechanics as one subject and dispel many mysteries about them. Optical Doppler frequency shift is
seen to be a primary geometric source of relativistic quantum effects ranging from Lorentz transformation of
spacetime to Compton scattering to the existence of mass-energy and classical Newtonian mechanics of Unit
1. A classical Newtonian mechanic might say, “Think particles. Waves are illusory.” A quantum mechanic should
reply, “Think waves. Particles are illusory.” Pluralitas non est ponenda sine neccesitate.

Some related books

This book is most in line with works that many regard as outside the mainstream including Quantum
Electrodynamics by Feynman, The Feynman Lectures by Feynman, Leighton, and Sands, The Berkeley Series
on Physics 3. Wave Mechanics by Frank Crawford, Mechanics by Landau and Lifshitz, and Classical
Mechanics by Arnold. Hawkings “God Created the Integers” and Penrose’s “Road to Reality” are among

recent additions to a list of readable books with depth.

William G. Harter
Fayetteville, Arkansas
January 2008
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Unit 1

Newton-Hamilton Classical Mechanics

tangent
arv

normaj’

CIIB// p= L

H=const

tangent
arp

W. G. Harter

Basic ideas of velocity, momentum, and kinetic energy (KE) are reviewed using geometry of
collision experiments between pairs of masses and extending it to many. Basic ideas of
potential energy (PE) and force are introduced by defining PE as the KE of one or two balls
that provides a force field for others. The two most famous PE functions, those of Coulomb
and of a harmonic oscillator and linear (Hooke’s Law) force are introduced. The elliptic orbits of
the latter are reviewed in considerable geometric detail. This helps to clarify the basic axioms
of classical mechanics.
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Chapter 1. Velocity, slope geometry, and trigonometry

A 4-ton SUV going 60mph approaches a 1-ton VW going 10mph. (Fig. 1.1a.) The SUV driver is busy
text-messaging on a cell-fax instead of watching the road ahead.

Ka-runch! The SUV rear-ends the VW. (Fig. 1.1b.) What happens then?

Well, both vehicles suddenly change speed. Our job is to figure out those speed changes. (See question
marks in Fig. 1.1c.) The answers that we find later will depend upon whether the collision is a “ka-runch!”
or a “ka-bong!”” or (more likely) an intermediate ““ka-whump!”* as discussed shortly.

(a) Before collision... (b) Collision! (c) After collision?
7 mil Extreme inelastic case
mile
>
-1 08 -06 -04 02 (
-6 sec. A
-12 sec. —5 ZEa | T
- Qo
N)
_ “a
-24 sec. <= —ad -
NS
N—
-36 sec. 4 / T |
=
L1 |5
-48 sec.F; 7% S
~
7 L \/
e~ &

Fig. 1.1 Time vs. space graphs of (a) SUV (going 60mph) and VW (going10mph), (b) collision, and (c)
possible outcomes of two extreme cases: the inelastic ““ka-runch!” and perfectly elastic “*ka-bong!”

Our job is a lot easier than what first-responders, doctors, lawyers, insurance agents, ministers, or
psychologists do to deal with results of such speed changes. Such difficult human problems are quite beyond
our scope here. Also, | can’t say why so many people “need” n-ton SUV’s, but | do know you can get
$100,000 off 2007 taxable income by buying an SUV provided it weighs over 6 (six) tons!

My hope is that graphical analysis of physics and economics may help avoid injury due to either one.
Graphs ought to give quantitative results while helping to expose logic. Our first graph (Fig. 1a) is a time vs.
distance plot. It shows speed by slope-from-vertical. It has been used for space-time relativity since Herman
Minkowski, one of Einstein’s math profs, suggested it. Calculus texts use a distance vs. time plot to show
speed by slope-from-horizontal as Newton liked to do. Fig. 1.2 compares the two. They both use a 1:1 ratio
(45°slope=1/1) to represent 60 mph = 1 mile/min. in (a) but also 1 min./mile in (b).
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(a) Time vs. space plot (Minkowski) (b)Space vs. time plot (Newton)

I =time
| ‘||’m' 30 sec.
24 -18-12 b, 1271824

507Eﬂ —]8‘

VW velocity = 10 mph 6 > ‘7

( slope-to-horizon: 1/6 )

Jet velocity = 600 mph
( slope-to-horizon: 1/10)
SUV velocity = 60 mph

( slope-to-horizon: 1/1 )

slope-to-horizon .
=a/b

a=altitude

[ =

b=base

SUV velocity = 60 mph
VW velocity = 10 mph ( slope-to-horizon: 1/1 )
( slope-to-horizon: 6/1 )

Jet velocity = 600 mph

( slope-to-horizon: 10/ 1)

~
S

Fig. 1.2 Comparing slope (a) Minkowski time vs. space plots vs. (b) Newton’s space vs. time plots.

The two plots (a) and (b) are equivalent; (a) is transformed into (b) by doing a mirror-reflection across
the 45° diagonal (1:1)-SUV-line, the one line that is the same in (a) or (b). | prefer (a) for vehicular dynamics
since cars usually go horizontally. (With (b) you might ask, “How do cars climb walls?”)

Now, slope is defined as the ratio Ay/Ax of vertical altitude Ay per horizontal base Ax. This equals
velocity v=Ax/At for a horizontal time-t-axis and vertical space-x-axis like Fig. 1.2b. So horizontal x-axis and
vertical time-t-axis of Fig. 1.2a has slope=At/Ax=1/v inverse to Fig. 1.2b slope. The lowest slope=1/10 in Fig.
1.2a belongs to jet velocity v=600mph that is the highest slope=10/1 in Fig. 1.2b, and a low VW velocity of
v=10mph has a triangle of steep slope=6/1 in Fig. 1.2a but in Fig. 1.2b that VW line is a low slope=1/6.

Each unit graph square in Fig. 1.2a has a horizontal scale factor of s,=0.1mile(per square) and a
vertical scale factor of sy=6sec.(per square) and vice versa for Fig. 1.2b. If you multiply scale s, by factor f,
and s, by f, then each graph slope £¥=(n, vert. squares)/(n, horiz. squares) changes to (f,/f,) & .
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Right-handed Cartesian coordinates

Rene Descartes (1596-1650) is said to have invented (or discovered) the Cartesian
graph and coordinate system. We usually call the two-dimensional (2D) version “XY -
coordinates” and three-dimensional (3D) versions are “XYZ-coordinates.”
Four-dimensional (4D) space-time (xyzt)-Minkowski coordinates after Herman
Minkowski (who was Einstein’s math professor)’came later (1905-1908). The 2D
projection of one space dimension (x or y or z) and time scale-by-lightspeed (ct) is
called a Minkowski graph. Lightspeed ¢=2.99792458 m/s has velocity units so ct has
distance units like x or y or z.

Two-dimensional (2D) XY -graphs often draw the primary X or x-axis along the
horizontal direction with x increasing to the right, and then place the secondary Y or
y-axis perpendicular or normal to the X-axis with y increasing vertically.

What (or which) physics variables should be “primary?” Well, that’s up to you.
The choice between Minkowski(a) and Newton(b) in Fig. 1.2 is a matter of taste.

2 quadrant 10 15t quadrant

-1.0 -0.5 0){0] 0.5
| 0
- S|= (0.5.-¢
R =(-09,-0.3)
-0L5
34 quadrant -1.0 4% quadrant

The graph above is called a right-handed coordinate system since it points like
your thumb (X) and forefinger () of your right hand as you extend to shake hands or
hand someone a plate of escargot. (Descartes’ French cuisine is respected here.)

A toothpick sticking up from the escargot points in the Z or z-axis direction of a
right-handed 3D Cartesian coordinate system as shown below.

y-axis

X-axis

t Minkowski (who was Polish) told Einstein (who was Swiss) that he was a “fat lazy boy.” Einstein
never used Minkowski graphs. It is sad story since Herman’s graphs could help many more to visualize
relativity and expose its geometric structure. We will certainly not repeat that sad mistake!

A. Einstein, Annalen der Physik 17, 891(1905).

H. Minkowski, Mathematisch-Physikalische Klasse, vol. 1, 53 (1908).
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We do rescaling of dimensions whenever we change units. For example, changing miles to feet in Fig.
1.2a uses factor f, =5,280 ft. per mile (or ™ )and changing minutes to seconds uses f, =60%¢ . The scale ratio

mlle min.

(f,/f,) is 88, that is, 60mph equals 88 ! . SUV slope of 1 in Fig. 1.2b is 88 in a ft. vs. sec. plot. That’s too high

to plot 60mph accurately but a ft. vs. sec. or ft. vs. min. plot will be more appropriate for parking lot speeds.

Change and delta variables

The delta notation, such as Ax, Av, At, and so forth, is confusing to one who has
not had a calculus course (or has forgotten that stuff). Roughly speaking, the Greek
upper case “D” or delta (A) stands for “difference” or differential, and Ax should be
read as “change of x” or differential of x and thought of as a single entity.

It is a common mistake to read Ax as “A multiplied by x” or “A timesx ” since,
after all, product p of quantities a and x is written p=ax or better p=a-x. Instead, the
mathematical cognescenti think of A as an operation that acts on a variable x or
whatever to give whatever change has occurred in that variable.

When the letter A is used to denote an actual number or variable one should take
care to write its product with another variable x asA-x or (better) x- A to avoid
confusing it with Ax.

Slope and delta ratios

Slope ratio Ay/ Ax of a line or of a triangular hypotenuse is a key concept that is
common to mathematics and physics beginning with Babylonian and Greek plane
geometry of Euclid (300 BCE), and progressing through analytic geometry of
Descartes (1620), the complex trigonometry of Euler (1700), the calculus of Newton
(1720), the relativity of Einstein (1905), and the quantum mechanics of Planck
(1900), Bohr (1920), Schrodinger (1925), and Dirac (1930). (That’s a short list. A full
one could take pages.) Physics uses slope like soup uses water. It’s all based on slope
and related triangular angles, areas, and ratios. We must study slope!

So far we have only talked about slope of straight lines in Fig. 1.1-2. For them
triangle size or location makes no difference to ratio Ay/ Ax. All triangles in the figure
(@) below are similar triangles, but triangles hanging ona curve in figure (b) are not.

(b) slopes Ay/Ax
T _ are not equal

a
/
tangent line

~

X

Slope of a triangle hanging on a curve depends on location x and base segment size Ax.
Soon we will define slope of a tangent line to a curve in (b) by making its base
segment Ax so small that the curve over it looks straight as in (a). Then (to graph
accuracy) the tangent slope will only depend on location x on the curve.
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Slope angles and ratios
Most of us learn to measure slope by degrees(°) of a slope angle 6. Greek “s” or sigma ¢ stands for
sector slope. (We also use theta (0) or phi (¢).) But, degrees are an arbitrary choice of 180° per (1/2)-turn or

360° per full turn. A better unit is 1 radian=180/z~57.3°. A c=1radian-sector on unit circle (r=1) (Fig. 1.3a)
has unit arc-length (/=c.r=1) and unit sector area (A=c-r’=1) based on n=3.14159..., not arbitrary numbers.

(a) Unit angle o=1 radian (b) 1/4-circle angle o= n/2 radian
=57.2957795...°(7/180°) —90°(n/]80°)=] 570796...
T Arc Arc
/f radius length length
/ ri=1 ! =ro=1 =ro=n/2
// c=1 //
[ radian [

1/2)r-0 =1 | (12)P-c+(1/2)1% 0= T/2
ctor Area / /

/ Total S ctorW
o=1 e % n/Z

Fig. 1.3 (a) Defmltlon of unit angle (o=1) on unit circle (r =1) (b) A quarter turn sweeps half the area.

The trick here is that the sector slope line sweeps out two pieces of the pie to make a whole pie or
area pi=x if angle o is = or 180° The 1/4-circle angle o=r/2 in Fig. 1.3b sweeps area nr’/2=n/2 of half a pie. It
may not be how you serve pie, but it is how mathematicians serve n. (There (or their) pie (or pi) are square!)

Actual slope is the tangent of angle o written tanc and so called since it is the length of a line tangent
to or “touching™ a unit circle from angle o to x-axis. (See Fig. 1.4b.) Another triangular ratio is the sine or sinc
that stands (I think) for “slope over incline” or some such. While tangent in Fig. 1.4 is an a:b ratio

(2tiude_a_d_ tan ), the sine is an a:r ratio (25%=2=8= sin 5 ) that civil engineers use to “grade” roads.

percent-grade=100-(altitude Ay gained)/(distance Ar traveled) =100 sin ¢
High grades are good in school but bad for roads. An interstate highway would “flunk” anywhere its grade
was above 5%. This changed in 2001 with the Bush administration’s ““No Road Left Behind”” policy.
Each triangle ratio switches places with its codependent ratio if you switch x-and-y-axes (or altitude-
and- base) or switch Fig. 1.2a Minkowski plots to Fig. 1.2b Nevvton plots For example, a cotangent ratio

base b base _b
e =2 = Ay— coto is codependent to tan o, and cosine ratio 22 =2==cosc is codependent to sin c.

In comparing (a) vs. (b) in Fig. 1.2 we saw that a slope (like 6/1) in (a) is inverse slope (1/6) in (b).
(That was for the 10mph VW.) In other words, any slope 2= tanc in (a) becomes 2=coto =1/tanc in (b).

Also any slope angle s in (a) becomes a compliments, =5- ¢ to angle o in (b). (See Fig. 1.4a.)
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From the two preceding paragraphs we deduce that any ratio like sinc or tanc for angle ¢ must equal

its co-ratio for the compliment 6,=r/2—c, and vice versa.
sinc=coso,, sino,=coso, tano =coto,=1/tanc,, tano,=coto=1/tanc

Two other ratios use secant (or “sword-like””) lines that pierce the circle in Fig. 1.4b. The horizontal line is a

secant ratio [3*={=A"=seco =1/coso and its co-ratio is a cosecant ratio e =I=4"=csco =1/sinc .

(a) Trlangle with %—G = compliment to slope angle

/
SBCQ//Z‘:F seco= oo >

slope angle o=1 o= S, %
5| altitude G
(b) Slope ratios for o=1 (c)...for o=m/2
7777777777777777777 ) tangentzr tanGc= 00 »
co-tangent |Gy (,'()—f(lllgc’llLJ
=r coto=06421} - > —rcoto=0 |I°
r ¢ altitude=xrsinc=1
/ -«
/ (¢ / r C
neseo 7 / \
| 6=l ;‘ 6 =n/2 ‘
| |
| rcosG=0 |
/
i r=1
|
|

r=1
\\ secant =7éc($=] 8508
< + r

~__ _— -

<€

_—

Fig. 1.4 (a) Right triangle geometry for o=1 slope (b) Triangle ratios for =1 and (c) o=r/2.

Fig. 1.4b has eight different but similar triangles with the same angles (6,m/2,6,) as the triangle in Fig.
1.4a. Can you spot them? Whether big or small, similar triangles share ratios (sine, cosine, or tangent) if (and
only if) they share angles. To do geometry problems we look for “hidden” similar triangles and hidden right
triangles that form similar rectangles. Right triangles have relation a’+b?*=r? of Pythagoras (~570 BC).

One secret is to visualize sequences of scale change or rotation transformation as in Fig. 1.5 where
each rectangle is rotated by 90° and shrunk by a factor cotc=64.2%. Rectangle diagonals in Fig. 1.5a (and
sides in Fig. 1.5b) give a power sequence (...tan's,tan’s=1,(tanc)'=cot's,(tanc) >=cot’s, (tanc) *=cot’s,...).

A power sequence is also called a geometric sequence since it is suggested by geometry. A rectangle
sequence in Fig. 1.5a is lined up with the XY coordinates of the page, that is, each side has zero or infinite
slope but the first diagonal (tanc) has a negative slope angle of -¢, = -1-radian or -57.3°. The sequence in Fig.
1.5b begins with a rectangle side (tanc) at angle —57.3°. Each sequential rotation in either figure is 90°
clockwise around the original tangent point with rectangle size shrunk by factor cotc=64.21% each time.
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(a) Rectangle diagonal sequence (b) Rectangle side sequence
{...tano, 1 coto,cot’c,cot’o,...} 4 {...tano, | coto,cot’c,cot’3o,...}

Fig. 1.5 Geometric coto=0.6241 sequences of whirling rectangle segments based on slope angle o=1.

Exercises for study of slope and trigonometry

1. Construct whirling square diagrams for 60° slope angle s=n/3without using protractor. First compare the
precision of graph-derived values of sins, cosc, tans, etc. with algebraic ®"Y/,, calculator-derived numbers.
Solution Hints:

Only certain angles have exact Euclid rule&compass construction and o=60° is one of them. (But, =1 isn’t!)
If you could “straighten” the (¢=1)-arc of a (c=1)-sector (Fig. 1.3a) to one (r=1)-side of an equilateral triangle,
its slope angle would grow from 6=1=57.3° t0 6=n/3=60° as shown in Fig. 1.6b.

To construct a 60° slope a’la Euclid, draw a radius-(r=1) circle by compass and use the same radius-r
setting to strike an arc from X point-(x=1,y=0) to locate R as in Fig. 1.6b. So now, theoretically, arc-RX is
(=n/3=1.0472...long approximately but line-RX has length-(r=1) exactly. At 2-figure precision both have
length 1.0, but at 3-figure precision, arc-RX length is 1.05, 5% greater than line-RX length 1.00.

Whether a math or physics theory is “correct” or not depends on our level of precision. As we will
see, it is pretty tough to get level-3 absolute precision (1 part in 1,000) with ruler and compass construction
but level-2 is pretty easy. By taping fishing line onto arc-RX, we can see that it is about 5% shorter than a
unit line, but measuring 4.7% is challenging and 4.72% requires tools most don’t have.

We easily get level-9 precision by poking sin(x/3) into a calculator (or sin60° if set for degrees) to get
sin(n/3)=0.866025403.... but only can estimate 0.86 or 0.87 in Fig. 1.6b graph as indicated by 222 marks.

To construct the tangent declination by compliment angle o.= n/2-n/3= n/6 (or 90°-60°=30°) we strike a
unit arc off the —Y point to intersection point Q on the 4™ quadrant-YQX of unit circle in Fig. 1.6¢. The line
OQ thru point Q is perpendicular or normal to original slope line OR since o.+c is 7/2(90°) for any o.

This line OQ drawn thru point R is the tangent decline we need for this problem. Just redo arc inter-
sector -YQO to make sector NPR centered at R instead of O. Then draw tangent line PR so it extends down to
secant point S on the X axis and up along the cotangent line to the cosecant point on the Y axis.
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(a) Unit circle (b) Tangent slope ng (60°)
R
T TY . Yy T3&w Arclength
radius | radius / ! =r-o0=n/3
r=1 | r=1 - 222
\ / altitude=r sin g 0.8664
| \ _)_} ?
| \ o60° 60° vy
-X 19, 60 6070 P L
\\\ £l =32
" 60P oZ60P  or B
'\YQJ/ Y~ rcos™
3 222
(c) Tangent declination G .= ~ (30°) (d) Secants etc. 1 cot§:2.5 7)Z§l
Y[ p rcsc _:l 547 [P . tangent=r tan®=1.732
A | > “ = >_K 3?2
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=] A \\‘
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G =T/6 (30° secant =r sé¢> :2.000:)\
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Fig. 1.6 Details of a geometric construction of Fig. 1.5 for slope angle o=nr/3 (60°)

Segments OS and YR provide numerical estimates of calculated values sec(r/3)=2.000 and csc(n/3) =1.155
along X and Y axes, respectively, in Fig. 1.6d. The value sec(r/3)=2 like its inverse cos(r/3)=1/2 is exactly
rational, a nice feature of a (30°,60°,90°)-triangle with side ratios (b:a:r)=(1:v3:2) (It is a right triangle, so:
a?+b’=r?) The “30-60" is a famous right triangle students must learn. Others are “3-4-5” ((a:b:r)=(3:4:5)) and
the “45” ( (45°,45°,90°)or(a:b:r)=(1:1:12)). A “Golden” ratio G =% (1+ J5) triangle is very cool (and rich).

Arc functions

So far we give an angle or unit-circle arc ¢ and construct or calculate trigonometric functions of ¢
including a=sinc, b=coso, t=tanc, 1/a=csco or their co-functions. Now consider the reverse or inverse case:
we are given a, or b, or t etc. and must come up with an arco (or arcs o,, ,...) that gives a, etc. To do this we
find arc-functions arc-sine, arc-cosine... or inverse trig functions sin*, cos™...as follows.

o =arcsin(a)=sin™(a), o =arccos(b)=cos™(b), o =arctan(t)=tan™'(t),...
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The exponential (‘1)-notation seems to confuse sin™(a) with (sin(a)) *=1/(sin(a)) that we do not want here.
(However, it is conventional to write (sin(a))"=sin"(a) or any power but (*1).)

Algebra of arc-functions is trickier than algebra of functions themselves. Geometric constructions of
sin?, cos™...etc. are not so tricky but quite simple and revealing. To find sin*(0.5), for example, we draw a
horizontal line at y=0.5 and see where it intersects the unit circle. (Fig. 7a) Nothing to that! Except, we see
there are two angles ,=7/3 and ,=27/3 that give sinc,=0.5=sinc,. The same applies to cos*(0.5) except now
the angles are £7/3. (Fig. 1.7b) Note the antipodal (+180°) angles that equal tan™(0.5). (Fig. 1.7c)

(a) Find arc-sine 6=sin"1(0.5) (b) Find arc-cos 6=cos™'(0.5) (c) Find arc-tan o=tan’'(0.5)
a/r =0.5 b/} =0.5 __a/b=0.5

e o —_ N \\\\\\\' & 2
150° & ‘2
~N a = &\ s & C
S

i
\62:

5w
6 3 - ¥ 0,=0.464
O 6 O = ] g
X o= /X E b
. / ?i;
radius radius /”g/k
r=l r=l y S ,;//;//// \\\\\\\\
Z60°

Fig. 1.7 Geometric construction of arc-trig functions of 0.5=%. (a) sin*(3) (b) cos™(3) (c) tan™(3)

More challenging is finding arc-secant (say, sec*3.0) by geometry. Try it first without looking at the answer.

Solution Hints:
We need to find the tangent that goes from 3.0 to touch the circle. A circle of radius r=3.0 concentric to the
opy from x=3.0 to touch unit circle.

_ [ I - o~
\ o d //,/
\ \12 0 o ; 6/0?”///\///

07
£ 15 0°72 Vab=\B,
/ \| £ Rt \

/ | & ol |

Y

| 0 I 2 [pE 0 I PREEC) bid —g—> e a=2 3
\ =8 - \ /
\ \\ /| % TL7 \ 17 /
M st B0°y /
% b [P
4, Y -90° K W
— — %w —— ——

Fig. 1.8 Geometric construction of arc tangent, arc secant, and geo-mean square-root.
Or else we simply draw rectangle diagonal thru unit circle. This leads to Euclid’s Geometric Mean
construction of a product square root V(a-b) that is V8=2.82... and is the desired tangent in this case.
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Know your calculator and ATAN, too! (atan2(y,x))

Scientific calculators do not always give the solution you want for arc-function
sin(a), cos™(b), or tan™(b/a). For one thing, they never give an angle in the 3"
quadrant (minus-x,minus-y) S0 you could be wrong 25% of the time.

But it is worse than that. “Blind” arc-calculations are wrong half the time.

As you vary altitude a=y from (+1) to (-1) values in Fig. 1.7a the 1% arc-solution
o,= sin™(a/r) sweeps the unit circle in the right-half plane while its x-reflection is the
2" solution o, is in the left-half plane. The calculator ignores o,.

As you vary base b=x from (+1) to (-1) values in Fig. 1.7b the 1% arc-solution ¢;=
cos(b/r) sweeps the unit circle in the upper-half plane while its y-reflection is the 2"
solution o, is in the lower-half plane. Again, the calculator ignores o,.

Varying either altitude a=y or base b=x from (+1) to (1) in Fig. 1.7c gives a full
range of solutions ;= tan™(a/b) but a calculator cannot distinguish between the first
solution and the 2" antipodal solution o,= tan™(-a/-b) since a/b=-a/-b.

So the calculator plays it safe and gives the acute angle solution in the arc-range

-90° and +90°, that is ("< o <'7). The obtuse angle solution is ignored for ranges +90°

to +180° (2" quadrant *Z< o <+x) Or -90° and -180° (3" quadrant 2> ¢ > -7)

A correct solution is the sure-fire atan2(y,x) function that requires you to give
both the altitude a=y and the base b=x (with correct signs, of course) so it knows
which quadrant you’re in. The atan2, built into calculators gives what is called the
rect-to-polar coordinate conversion often labeled by a (x,y) — (r,0) -button.

i 2 2 -1 H
Plug in x and y and out comes r =+/x?+y? and 6 =tan""Y. The 6 is our correct .

Trig function plotting exercises

Use ruler&compass to plot the function y=cos(x) and y= cos™(x)=arccos(x). Do y=sin(x) and y=sin™(x).
Begin by constructing a 12-pt “clock” circle. Repeat using 45° diagonals to make a 24-hr clock.

Then you project the 24 points horizontally for y=cos(x) and vertically y=cos™(x)=arccos(x).

Shift the plot by 3 hours (90°) to get the sine and arc-sine functions. Each “hour” is angle 15° or n/6.
These are really important curves!
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Chapter 2. Velocity and momentum

Recall the car-crash problems discussed first in Chapter 1 regarding Fig. 1.1. The first one involves a
text-messaging driver of 4-ton SUV going 60mph SUV rear-ending a dawdling 1-ton VW going 10mph. (Fig.
1.1b.) What happens then? What velocity or velocities do the cars have just afterwards?

As sketched in Fig. 1.1b, the answer depends on whether it’s*“Ka-Runch” or “Ka-Bong” Or Some more
generic noise like “Ka-whump”. By*Ka-Runch” we mean the cars crumpled enough to become interlocked into
one hunk of metal weighing 5 tons. (4+1=5) This is a simple problem that is solved by drawing a line of slope
(-4/1) on a velocity vs. velocity graph from before-crash-point (v.)\/"** = 60, v/""*" = 10) to where that line

intersects the red 45° (Vs =V\y)-line at the after-crash-point (v{/\** = 50, v,/ """ =50). (Fig. 2.1)

N%
1 OOmph . y
o0 || F ZTsuv_ S Ka-Runch!
80 YW T suv . . . .
ol? W idpe | B (Extreme inelastic collision)
mp 1
VVW 40 v syl V. FIN — 50mph
30 |—ine » VVWIN—60
i N vrrial (Y sov =0V
45450 1 VVWIN :] Omph

10 20 40 60 70 80
0 30 40 50,5 90 100mph

Vv &=

Fig. 2.1 Anatomy in velocity space of a “Ka-runch!”” that is an extreme inelastic collision.

The logic behind a (V,,=V\)-line is that interlocked vehicles have equal velocity. The logic behind a
Ka-Runch-line of slope (-4/1) is subtler. It is due to Newton’s 1% axiom or “law” that says Nature conserves
so-called momentum, a sum of products of each mass with its velocity. It’s a law we can live with but, how?
Momentum exchange: a zero-sum game

During the car crash the velocity coordinate pair (Vs ,Vyw) change very rapidly in moving from initial
point | at (60,10) to final point F at (50,50) in Fig. 2.1. The Ka-Runch takes less than 1/50" of a second!
During that time, SUV will only lose one unit of velocity for every four units gained by VW since SUV is
four times heavier than VW. Newton writes this as a total momentum conservation equation.

Psuv +Pvw =Msuv-Vsuvt Myw-Vyw = Prta =CONSstant (2.1)
Checking (2.1) with Fig. 2.1 gives a total momentum P, =250 that the poor SUV and VW can’t change.
4.60+1-10 :4'VSUV+1'VVW =4.50+1-10 = PTotaI =250 (22)

The change of Py, must be zero (AP =0) before, during, or after the crash. It’s a zero-sum game.
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Msuv-AVsyy+ MyyAVyy = APy =0 (2.3)
Dividing by SUV change-of-velocity (AVg,y) and VW mass (myy) gives the slope relation in Fig. 2.1.
MSUV + AVVW =0 or Ava =_MSUV (24)
mVW A‘/SUV AVSUV mVW

Potar 1S @lso conserved in an ideal Ka-Bong of Fig. 2.2. Here cars bounce off each other without damage.
That’s unlikely at 60mph speeds! So Fig. 2.2 is rescaled to units of feet per minute. Then initial v}, =60 feet

per minute=1ft. per sec. is more like a parking lot speed, and insurance claims are less as the VW is bumped
from an initial \,,, =10 ft per min to ;' =90 ft per min=1.5 fps=1.02 mph. To find V" in Fig. 2.2, draw an

arc from initial I-pt (60,10) to hit final F-pt (40,90). Arc-center is Center of Momentum COM pt-(50,50) on
the 45° line. (It’s the final point if cars get “stuck” to each other as they do in a Ka-Runch like Fig. 2.1.)

“Ka-Bong!” (ldeal elastic collision)

100t per ZOM VSUVFINZ 40ft per min
80 VVWFIN — 90ft per min
70
60 VSUVCOM: 50ft per min
5 Oft per min
VVW 40 ! VVWCOM — 5 Oft per mi
30
20 AT VSUVIN: 60ft per min
10

VVWIN — ] Oft per min

10 20 30 40 60 70 80 90 _
0 501 per min 100f: per min

Vsor B8

Fig. 2.2 Anatomy in velocity space of a “Ka-Bong!” that is an extreme or ideal elastic collision.

The Ka-Bong in Fig. 2.2 is like the Ka-Runch in Fig. 2.1 followed by an equal but opposite rebound or
henuR-aK (un-crash) that undoes the “damage” by the Ka-Runch. Now you might ask, “Is this possible outside
of the cartoon world or a video game?” Well, certainly not at high speeds and not quite at low speeds.

Only in a quantum nano-world do perfectly elastic processes exist. Any collision of classical objects,
however gentle, will permanently disturb or exchange thousands or millions of atoms and electrons. We call
this “wear&tear” or entropy growth and ignore it until it has gone too far. (Then, we discard the objects!)

Even gentle bumps like the one starting at initial pt-I in Fig. 2.2 cannot quite go exactly to final pt-F on
the COM circle, but collisions with no appreciable damage pass as (almost) elastic or time reversible bumps.
Avideo of the Fig. 2.2 | - F bump played backwards looks like an F « | bump that is not extraordinary. But
a reversed video of the Fig. 2.1 crash looks like a crazy “un-crash™ where ruined cars get reborn like new.
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Deducing (perfect?) conservation from (ideal?) symmetry

Newton’s momentum or P-conservation axiom or “law” is one of the most strictly enforced laws in classical
physics. (It’s also quasi-conserved in quantum physics that so often seems to get away with utter mayhem!)
Momentum is like some kind of fluid that you can buy and sell but never can create or destroy. In our car
bumps or crashes the zero-sum-rule says, “Whatever P the VW gains (or loses) the SUV loses (or gains.)”

A classical law without classical proof remains an axiom until deeper theory may rule on it. Quantum
theory has ruled and can shed some light on origin and properties of this mysterious “P-fluid.” It also shows
how to cheat P-conservation and other classical “laws” a little. This will be discussed in later units.

In the meantime it is possible to deduce P-conservation using more fundamental axioms that are called
symmetry principles. This is a grown-up geometric approach that is also very useful in the quantum world.
Most importantly, symmetry helps deduce principles of energy E and E-conservation as discussed below.

Symmetry means ““same-etry”” or ““similarity’” or ““‘smoothness’ and other *“s” words like simplicity.
The fancy technical term is isotropy or isometry with iso meaning same. For example, the most symmetric ball
would be a sphere since it is isotropic and has the same radius everywhere. A most-isotropic plane or most-
symmetric plane is flat and bump-free. Some would say symmetry means Beauty, but others might say it
means Boring. Think of a seemingly endless Kansas prairie for either response.

Symmetry can refer to sameness in time as well as in space and often the two are related. (Think of
driving across Kansas.) The idea of being time reversible is an example from the preceding page. Another is
Galileo’s relative-velocity symmetry or Galilean relativity. Both are behind Fig. 2.3 and Fig. 2.4 below.

Galilean time-reversal symmetry

Suppose a traffic cop is going 50mph in a lane adjacent to the one occupied by the SUV and VW. He or she
records (using radar) the SUV coming up at 60mph, and puts on the blue-light to stop it for exceeding the
20mph limit in a school zone. Just then Ka-Runch! SUV+VW becomes a single 5-ton hunk going 50 mph, the
same speed as the cop. (The cop can just reach across to hand SUV a cyber-ticket for (1) speeding in a school
zone, (2) improper following, and (3) driving while faxing. C-tickets are costly even for SUVites!)

The Vi vs. Vsuy graph for the Ka-Runch is shown in Fig. 2.3 as viewed by the 50mph cop. It is the same
as Earth-frame-view in Fig. 2.1 except the cop’s speed of 50mph is subtracted from both V-scales. The cop
sees a final 5-ton SUV-VW hunk going 0 mph relative to cop-frame or COM frame of SUV+VW.

The Vi vs. Vsuy graph for the Ka-Bong in Fig. 2.4 is viewed in the 50mph cop-frame or COM-frame.
Again, it’s just Fig. 2.2 with 50mph subtracted off V-scales. Cop or COM-frame view shows simplicity and
symmetry. Velocity values simply change sign as the Ka-Bong crosses the whole COM-circle diameter.

Initial 1-pt (10,-40) — (reflection thru COM pt-(0,0)) — final F-pt (-10,40)

Reversing time (Ar — —Ar) makes (-)velocity (V =§‘fa_§§= -V) and crosses the diameter oppositely.

Initial 1-pt (-10,40) — (reflection thru COM pt-(-0,-0)) — final F-pt (10,-40)

That is just Fig. 2.4 with blue time-direction arrows reversed. (INITIAL | switches places with FINAL F.)

Elastic collisions (Fig. 2.4) are symmetric and balanced to t-reversal, but inelastic Ka-whump’s are
unbalanced if they stop short of the COM circle. A Ka-Runch (Fig. 2.3) is unbalanced to an extreme.
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50mph . 7 .
a0 [ s S Ka-Runch!”in COM-frame
30 {41 yw_ = suv . : ..
ks Boiope | > (Extreme inelastic collision)
?]Z L F o« FINAL |- VSUVFI =Ohmpi
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Fig. 2.3 COM-frame or 50mph cop-frame view of a ““Ka-runch” inelastic collision of Fig. 2.1.

“Ka-Bong!" (Ideal elastic collision in COM-frame)

50
fperml:o F //l FIN. VSUV ']Oftpermm
30 ,’/% k VVWFIN — 40ftper min
20 b 6;9 R
10 ,’/ g Ce(r)l;e p VSUVCOM Oft per min
Oft per min ; T -
V -10 IVVW_ SUy= MOme/n N VVWCOM — Ofl per min,
Vw ’ 7/
20| line S
-30 : il V ] Oft per min
S\ aviTiaL [ 0V v
ey ‘ =40
45 vl VVW — =4 Uft per min
-40 -30-20-10 10 20 30 40
-50ft per min //ﬁ per min 50ft per min

SUV
Fig. 2.4 COM-frame or 50mph cop-frame view of a ““KaBong” elastic collision of Fig. 2.2.

This is a common situation in physics. The real (or generic) world lies between extreme ideals that are
easiest to quantify. On one hand, we’ll say a Ka-whump that ends up close to its inital COM-circle is elastic or
Ka-Bong-like and, on the other hand, a Ka-whump that stops near its COM-point is inelastic or Ka-Runch-like.
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Galilean relativity and spacetime symmetry

Galileo grew up in Renaissance Italy as it flourished from its sea trade. Perhaps, watching ships of trade glide
smoothly in the harbor led him to ideas about relativity of velocity. In any case he wrote about comparing
what a sailor sees in a ship-frame with what is seen in the Earth-frame. He noted how apparent velocity of an
object decreases by subtracting the velocity of the observer’s frame.
Subtraction of the cop’s velocity V,,,=50 from Earth-frame velocity (Vsyy,Vvw)=(60,10) of SUV and
VW in Fig. 2.2 gives their initial velocity (60,10)-(50,50)=(10,-40) in cop-frame.(Fig. 2.4) Such a subtraction
(or addition if the cop goes the other way) is a Galilean relativity transformation. Fig. 2.4 is a redrawing of
Fig. 2.2 with new (Vsyv,Vyw) scales, each reduced by 50mph. Or else, you may start with Fig. 2.2 and slide
each velocity point down its 45°-line by 50mph, (COM and cop-frame Earth-relative velocity) as in Fig. 2.5a.
This becomes a “slide-rule” in Fig. 2.5b that quantifies several Galilean frames. The initial VW frame
(vw(1)) is found where the 45°-1-line hits the horizontal (V\,,=0) axis. VW starts in frame-vw(l) and is hit by a
(Vsuy=50)-SUV that knocks VW into a new frame-vw(F) of final V,,,=80 as SUV slows to a final Vg,,=30.
Next a final SUV frame (SUV(F)) intersects the 45°-F-line on the vertical (Vg,,=0) axis where a final
(Vsuv:Vyw)=(0,50)-point-Fgyyr results if initially a (Vsy,,=20)-SUV Ka-Bongs a (Vyw=-30)-VW at point-lsy.
Note that seven Ka-Bong lines in Fig. 2.5 show seven different-frame views of the same Ka-Bong. In four
frames, one car has V=0 either before or after the Ka-Bong. One frame, the COM has V,, =0 before and after.
That COM-frame is balanced to velocity reversal (+V <> V). Other frames have distinct V-reversed twins
with INITIAL | and FINAL F switched. For example, Isyyr <> Fsuve and Fsyyg) < Lsuvg) are symmetry twins.

(a) Galileo transforms to COM frame (D) ... and to six other reference frames

L /
10 L By 10 F F Earid
V 90 =) V 90
f%é Y/ G VW,
VW 80 s VW
70 7 iz ;
7 /
60| .~ / 60| .
r sn by SUVIF)
JU 4
" cong A s 17 o A s
7 s
7 %0 7 Fsuwu 0 7
/ I L I /
i stibtractiy 8\ farth i }zm/'/h
v ; F , ) /
1 (50,50) e -
/ ) / ,\,) VW(I, L
290-80-70-607, 40-30-20-1 00-80-70- 40-30-20\1 P
100 5 I\ 10 2030 40356070 80°90 1yy  _ j ol -90-8070 8Osk 0-30-20510°K 710\ 20 30 40 50,60 70 80 90 1)
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Fig. 2.5 Galilean transform of ““KaBong” in Fig. 2.2 to (a) COM-frame and (b) to other frame views.

Veon identifies a frame and is the weighted average of any Vsyy, Vyw pair (initial, final, or en flagrante
delecti!) on its IF-line. V.o, is zero for the COM frame so its IF-line is the same for +Vv or -V. (V¢ou=%0)
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Geometry of Balance: Center of Momentum (COM) and Center of Gravity (COG)

The uniqueness and constancy of a COM for the SUV and VW is connected with underlying space-time

symmetry or geometry of spatial balance in Newton’s equation (2.1) repeated here in different forms.
Protal =Psuv +Pvw =MsuvVsuv+ Myw-Vvw = MromaLVeov=constant (2.59)

Total momentum is a product of V) and total mass Mg =Msyy+myy Of a 5-ton SUV-VW “hunk”. This

holds whether the “hunk” forms permanently in a Ka-Runch or the cars bounce off in a Ka-Bong Or Ka-whump.

Both Py =MromVeon @and Veoy, are constant throughout the collision regardless of “auto-elasticity.”

Msyy Vv *myw Vow _ m _ constant

— — Mgy My
VCOM - M +m " weighted average M (25b)
suv vw of Vg, and V,, TOTAL

Weighted average Vcon Of (Vsuy, Vyw) is fixed as V go from initial to in-between to final values. Collisions in
Fig. 2.1 thru Fig. 2.5 all have V.,,=50 in the Earth frame. The 4:1-weighted average of each coordinate pair
(40,90), (50,50), (60,10), (70,-30),etc. on the slope-(-1:4)-line (in Fig. 2.6a below) is Vu,=50.

(a) Momentum balance in ViZOIC]l;f\; space  (b) Momentum balance in coordinate space
inal “Ka-Bong "-point

100 . . ey .
| VA 40.90) | inelastic ﬁ ~elastic
VW A\ “range of generic L
80/ [\ Ka-Whump” case 50mph case
Center of Momentum Zg A\ _poinis DO0mph
COM-Point™ & Final “Ka-Runch -point Karnyfcih!
PY 50,50) G
G |40 2 7 G R
o 5
COM-Frame view @
’ Y
‘/SU’P7 '."f,-—f 3 »il
o=y 1w
60
/ /50 0
coM o
COOrdinate — A Center of Mass
Fi’ame VieW o | is stationary

(4:1 weighted
average)

Fig. 2.6 Geometry of (a) 4:1-weighted velocity average (b) 4:1-weighted coordinate average.

Balance between velocity Vsyy and Vyy in (2.5b) relates to balance between position Xsyy and Xyw.

o Msyv Xsuv Frvw Kvw o Mg im, (2.5¢)
CoOM M +m weighted average ’
NU% vw of xXg, and x,,

As SUV and VW close, collide, bounce, or stick, the Center of Mass x. Stays at a constant velocity Veqy. In
the COM frame that velocity is zero as sketched in the lower part of Fig. 2.6b. The weighted average (2.5c) of
coordinates is also a Center of Gravity and is cartooned by a 4:1 Greek balance.
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Chapter 3. Velocity and energy

We noted that reflection symmetry or balance in space is connected with momentum or P=m-V
conservation. Uniformity or “sameness” of coordinate and velocity space means the SUV can lose a unit of
momentum only if the VW gains that unit, and vice versa. Momentum is a zero-sum game that does not
depend on whether the two protagonists bounce elastically or crumple in-elastically during their collisions.
Time symmetry and energy conservation

Now we consider symmetry or balance in time. This is connected with a something called energy that
also plays a conservation zero-sum game but, unlike momentum, requires elastic (Ka-Bong!) collisions. While
momentum conservation is axiomatic, energy conservation can be derived from the former. Let’s do that.
Time symmetry

Symmetry balance in Fig. 2.6 is between pairs of velocity values (Vsyv,Vyw) Or spatial coordinates
(Xsuv.Xvw) of the colliding SUV and VW. Weighted average (2.5b) equals the same V., for the initial pair
(Vary Vi), the final pair (v{y. Vi), or a pair (Vg (1),V,,, (1) at anytime t. (Recall (2.1) and (2.5), t00.)

IN IN FIN FIN
Protat = Mo Veor = MsyvVsoy + MywVow = MsyyVsgy + Myy Vi = ete. (3.1a)
We subtract IN’s from FIN’s to isolate SUV terms from VW terms and redo zero-sum relation (2.3).
_ IN IN _ FIN IN FIN IN
0= Prowar = MsuvVsoy = MywVow =M sy Vsgy = Veuy )+ Myy Vo = Vi) (3.22)
0=Mg, (AVgy)  +Myy, - (AViy) (3.2b)
(Ch.1 introduces Delta notation AV=V*™ _yV ) Here is another way to write the zero-sum relation.
FIN IN IN FIN
Mgy Vsyy = Vsoy) = Myy Vi = Vi) (3.3)
Now consider balancing IN vs. FIN pair (Vyy, . Viiy) for SUV or (v, Vi) for VW. Elastic (Ka-Bong!)

cases in Fig. 2.2 or Fig. 2.6 show how V., is a balanced IN-vs.-FIN pair-average of both SUV and VW.
Veom :% Vsoy + V) :% Viw +Viw) (3.4)

This is an algebraic statement of a time reversal symmetry axiom or IN vs. FIN balance mentioned earlier. For
ideal elastic (Ka-Bong!) collisions, IN and FIN points balance around the COM point. Switching past and future
gives a similar Ka-Bong and not a miraculous “un-crash” that shows up for V7™ closer to V., than V.

Kinetic Energy conservation

A definition of energy is derived by multiplying space and time balance equations (3.3) with (3.4)
VL VI Mg VY = Vi) =5 VY A0 O~ V)
%MSUV (VSZ]\X)Z _% Mgyy (VSIZV)z :% My (V\% ) _% My (VVQ{/N)Z
Then adding the (-)-terms to both sides isolates IN-terms, and a FIN-sum is proved to equal an IN-sum.
My (Vi) 45 My (Vig¥)? =3 My, (Vi) 45 Mgy, (Vg )? (3.52)
This% M-V is kinetic energy (KE) and it is conserved by a relation like (2.5a) for momentum P=M.V.

constant = KE;,,, =KE{\, + KE[)Y = KEg, +KE\, ~ where:KE=) M-V> (3.5b)

_ _  pFIN FIN  _ IN IN . p— .
constant= P, .~ = Pgu+ Py' = Pgy+ Py where: P = M-V (2.5@)epeated
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Conservation relations are insensitive to overall factors. So is factor ; in (3.5a) fortuitous? Well, KE
can be defined by integral relation KE =jVv-dP .(See below.) A V vs.P plot is a triangle with base P=M.V, altitude
V, and area KE=1P-v =2 M-V?. With V=(v"¥ +v"™)/2 our product (3.3)-(3.4) above isV-AP =[V-dP =IMV?.

Kinetic energy ellipse and momentum line

Momentum-conservation relation (2.5a) is rearranged for plot geometry.

M
) _ Mgyy
My Vow *M sy Vouy = (Mgyy +myy, )V, becomes: Vi, =V, = o — Vv =Veou)

(3.6a)

The Vgyy-vs-Vyy-plot of (3.6a) in Fig. 3.1 is a line of slope —Mg/myy, thru the COM-point (Veow ,Veow)-
V) = Vguy Y M
Con) = Vo Yow) g o Msov (3.6b)

Y-Yo=m-(X-Xo) Where:{ -
(x05Y0) = Veom - Veom) My

Energy conservation relation (3.5a) is rearranged by placing KE and masses into denominator.
2

V. Vi
1 2,1 2 . SUV VW
Mo Ve 5 My Vi = KE becomes: : =1 (3.73)
2SSOy (Z-KE] (2-KE]

Mgyy My

The Vgyy-vs-Vyw-plot (3.7a) in Fig. 3.1 is KE-ellipse (3.7b) of x-radius a and y-radius b to match (3.7a).

(x,y)= Veuv-Yvw)

x2 y2
—+-=—=1 where: 3.7b
e ab_(/2KE /21(15 (3.7b)

Fig. 3.1 also shows a smaller inelastic Ka-runch-1E-ellipse and a tiny KE-eIIipse seen in the COM-frame.
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Fig. 3.1 Elastic KE-ellipse hits (P™)-line at IN and FIN pts. Inelastic IE-ellipse hits only at Vo, pt.
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Elastic KE (Vs,,=60, Vs, =10), inelastic 1E(50, 50), and E“°"(10, 40) in COM frame is worked out for Fig. 3.1.
14:60%+1 110*=7,250 1450%+] 150°= 6,250 14.10°+] 1-40%= 1,000 (3.8)
The difference in energy between the two extreme types of collision, Ka-Bong and Ka-runch, is 1,000 units in the
Earth frame and 1,000 units in the COM frame. But, only in the COM frame does the Ka-runch! take all the
kinetic energy and leave both cars standing still. Galilean symmetry says “cost” of damage is the same in all
frames. Cost of a generic Ka-whump is measured by what fraction of E“©"'=1,000 is lost to inelastic crumpling.
A fine point of Fig. 3.1 geometry deserves notice. The tangent slope to the IE-ellipse at pt-(50, 50) on
the 45°(slope-1)-COM-line is that of the momentum line, namely —Mg,,/m\,=-4. Conversely, slope of dashed
tangent lines to the E“°"(10, 40)-ellipse on (slope=-Mgy/myy)-line is that of the COM-line, namely slope-1.
This beautiful duality is an important part of mechanics, both classical and quantum. Here it has IN and FIN
points stay on a (slope=-Mg,/myy)-line even as they coalesce to a tangent point of non-collision!
Head-on (V.Y =3,V = <) collisions are plotted in Fig. 3.2 below showing increasing inelasticity in

parts (b) and (c). (These involve an M,=6ton SUV satisfying Bush gas-hog entitlement.) The final KE-ellipse
shrinks from the initial elastic Ka-Bong ellipse to a smaller inelastic Ka-whump ellipse (E*™™=23"/; in Fig. 3.2b)
and to the totally inelastic Ka-runch-ellipse (IE=14 in Fig. 3.2c).

The “in-between-ideal” or generic Ka-whump cases will each have two possible final F-points where the
momentum line cuts the Ka-whump ellipse. The top F,,, point represents the partial rebound. Below is its
symmetry point Fp.. ., that represents cars passing through each other. Fortunately, that’s not a usual
highway event and certainly not a survivable one. But in the quantum world that’s business-as-usual.

(a) Ideal astie (b) Generic (c) Totally
Elastic LEANEISTC jnelastic inelastic
(Ka-Bong!) (Ka-whump!) whump (Ka-Runch!)
(36)
/
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b =~ZE ey b =\
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Pass-thru
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Fig. 3.2 (V,=3, V,=-4) collisions. (a) Elastic (E**=0). (a) Generic (E™*=11%5). (a) Inelastic (E**=21=°").
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Momentum vs. energy (Bang for the buck!)

What are momentum P and , really? A flippant answer is Bang! and . We pay (a lot) for the
latter in order to get the former. A less flippant answer based on space-time relativity and quantum wave
theory must wait until Unit 3. But, we can discuss relations involving P=M-V and E=M-V?/2 in the meantime.
Also, there’s the notion of Force. That’s the rate of being banged in bangs per second, if you will.
And, there’s Power, the rate of being bucked in $bucks$ per second, if you will. (Or, maybe you won’t.)
What we’re trying to say is that force F is the slope F=4F on a graph of momentum P vs. time t.
Also, we’re trying to say that power IT is the slope IT=4F on a graph of energy E vs. time t.
And, do not ever forget that velocity V is the slope V =% on a graph of position x vs. time t.
These and other relations (in calculus form) are collected below in preparation for lots of discussion later on.
Quick review of kinetic relations and formulas

The suffix kinetic refers to energy connected directly to velocity of motion (“kinos” means moving).
Kinetic energy KE is distinct from potential energy (PE is “stored” energy) or entropic energy (entropy is
chaotic or “trashed” energy like heat) that will be introduced later.

We now give a quick algebraic run-down of energy-related formulas to be introduced with more detail
and geometry soon. Readers with calculus or physics knowledge might use this to review and connect our
geometrical development to more conventional ones. Novice readers: Patience. Logical relief is coming.
Relations of energy W and space x

Energy or work may be defined by a delta-work product AW=F Ax of force F and distance-Ax-pushed.
More precisely, W is an integral [* F-dx, the area of a Fvs.x work-plot. Power, a time rate 1= of energy
production, is the product IT=F-V of force and velocityv=4‘=% . So, AwW=IT-At or W=[{'TT-dt=J5" FV -dt=] F-dx.
Relations of momentum P and time t

Momentum may be defined by a delta-momentum product AP=FAt of force F and time interval At.
More precisely, P is an integral & F-dt, the area of a Fvs.t plot. Force, a time rate F=52=%" of momentum
production, is a product F=M-a of mass and accelerationa=4; . (F=M-a is called Newton’s “2M Law.”)

With F=%, energy integral W=j&'TT-dt =3 F -V-dt is W=['F -V-dt=[{* v dt=] V.dP, the area under aV
vs.P plot where P=M-V is momentum. For a single mass M this area is kinetic energy: %M-VZ.

Table of kinetic relations

.. Velocity or time-rate Acceleration or time-rate
Position or space p o (3.9)
x=[V-dt of position:V = il of velocity :a = — '
dt dt
Work or Energy Power or time-rilite Impulse or momentum Force or time-rate )
_ — E P
E=]M-di=[F-dx of Energy .11 =— P=[F-dt=M-V of momentum:F =—=M-a

=[V-dP=MV’ (3.10)

(3.10a) (3.10¢)
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Exercise
Don’t look at figure below! Try the exercise yourself first.
Plota (Vsyv-1,Vsuv-2)=(60,10) collision like Fig. 3.1 but with an identical M=4 SUV replacing the VW.

V 120
SUV-2 {0
90
80

Final “Ka-Bong "—ee{fzt 70( 60) — /

' — 5 Inelastic I 35,35)
Elastic / Kinetic ko (60.10)
Kineticﬁ/ Energy 1 A
Energy ; 0 0070

Tothrse Vsur. circle
circle \ (IE=Z,225}
(KE=74( Momentum
- > PTO[al=280
e , . 2. JE
A M. =7 \line = b= N
ZKE 79 NA% MSUV
=b=\N37 — -80 =49.5
=60.81 Msuv oo
-110
-120

Exercise Fig. 3.3 Equal mass M=4 SUV collision geometry for elastic and inelastic cases.

35
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Quick construction of Energy ellipses

Graph paper facilitates construction of energy ellipses given the two radii a and b in (3.7). The first step is to
draw concentric circles of radius a and b. Then any radial line OBA *“points” to a point E on the ellipse.
Ellipse point E lies at the intersection of a vertical line AE thru radial intersection A with circle a and a
horizontal line BE thru radial intersection B with circle b.

Graph grid “finds” E for a radius OBA, no need to draw AE or BE. You can pick x and find y or vice-versa.

A .
/ - ralie :
// / / \B \ ,\ / /
s‘/ * E| |
O b a O b a

NS T g —

Exercise Fig. 3.4 Ellipse construction
Ellipse coordinates (xg=a-cosc, yg=b-sinc) are rescaled base and altitude (x,=r-cosc, y,=r-sinc) of Fig. 1.4.

Exercise Fig. 3.5 Analytic ellipse geometry
Verify that the values (x =a-cosc, y =b-sinc) satisfy an ellipse equation (3.7Db).
A dual or complimentary (gray) ellipse results if compliment angle c.=n/2-c is used so x and y values switch.
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Chapter 4. Dynamics and geometry of successive collisions

Mechanics gets difficult for many collisions, dimensions, or masses. A single one-dimensional two-mass (1D-
2-body) collision occupies Ch. 2-3. Now we do more dangerous things such as an X2-super bouncer from
Project Ball, our 1969 class project. (Am. J. Phys. 39, 656 (1971)) See the product liability disclaimer in Fig. 4.1.

Caution: Product Liablility Disclaimer

This ballpoint pen could be hazardous to your health!

The experiments which are the subject of this discussion are
both spectacular and potentially dangerous, and care to

protect one’s eyes should be taken. The simplest experiment The X'Z
involves sticking a ball point pen into a superball or other ball po int pen-
hard rubber ball and dropping the two onto a hard floor.
If done correctly the pen will eject the ball with such force pen launcher
it may stick in the ceiling of the room. Obviously you want M.=10 om

to be careful with this weapon. And, this goes doubly and triply 2

for the more advanced models that may be developed in the
course of studying this stuff. It is recommended that Supe rball
experimenters wear safety glasses when doing these experiments

with pens. (We could just say don’t use pens, but that‘s an easy penetratlon
way to do this experiment and probably the way most people depth

will go about it.) Some of the tangential experiments associated

with this development are less hazardous. To measure the ~ r2
potential force function of a ball one may simply paint the ball d= 2?3

and measure the spot size as a function of drop height 4. ¢

The saggital approximation d=r2/2R allows one to
quickly convert spot radius r to penetration depth x for a C -
superball of radius R as shown in the figure. Equating this ¢
to Mgh gives the ball potential energy function V(x).

Fig. 4.1 The X2-pen launcher with product liability disclaimer.

At first, the X2 looks like a 1D-2-body device. A superball(© ™whammo Corp.) of mass M; =70gm
launches a ballpoint pen of mass M, =10gm. But, it has a 3" body, bounce plate mass-Mo=10kg shown by a
rectangle in Fig. 4.1. Actually the third body most responsible for this experiment is old Mother Earth of
mass M, = 6:10* kg . (Earth mass M, and solar mass M_ = 2:10* kg are good-to-2-figure numbers to

remember. More precisely: M, =5.974210*kgand M_ =1.989110"kg .)

Collisions of very large or very small masses suggest thorny questions (Like, “What IS mass?”’) and
how do we deal with it. As a mass ratio M,/ M, approaches zero or infinity the slope of the P-conservation
line in (V4,Vy)-space (Recall Fig. 3.2.) approaches infinity or zero, respectively, as drawn in Fig. 4.2(a-b).

Geometric construction in Fig. 4.2a of final velocity for an elastic collision is a vertical reflection thru
the COM point (V,=V,) on the P-line if M;>> M, or else a horizontal reflection in Fig. 4.2b if M;<< M,.
Inelastic final points approach the COM point more closely if inelasticity is significant. (Recall Fig. 3.2.)

You should understand how a relatively large mass may give huge momentum to a smaller one but
transfer only tiny amounts of energy. Each P-line in Fig. 4.2 is part of a KE-ellipse. In the COM frame (where
the COM point is at origin) the P-line sits on top of an entire E-ellipse as the ratio M,/ M, approaches (a)
infinity or (b) zero. I visualize COM P-lines as ultra-thin ellipses between Iy and Fq and other P-lines in Fig.

4.2 as segments of a KE-ellipse that has (a) a huge V,-axis /2E / M, or (b) a huge V;-axis \2E/ M, .



©2008 W. G. Harter Chapter4. Dynamics of successive collisions 38

(a) v, FINAL (Elastic) ) v, FINAL (Elastic)
INAL (b) o INITIAL
: / , (top of very
M :> >M2 Totally Inelastic) M] < <M2 - I/NAL ]Ofm j;mp;e)
| F, ‘ INITIAL Aot /(Totally Inelastic)
‘(-sid@ of 7 (+side of F C/ Va Vo i
very tall 7 Very tall 0 \J \J
:w[lipse) 0 4 fllz]\? s,( 2) V] 0 ! V]

Fig. 4.2 Extreme mass-ratio collisions (a) M./ M, approaches infinity. (b) M,/ M, approaches zero.

Fig. 4.2a reflects our common experience of a bouncy ball of mass M, hitting the Earth of mass
M with velocity —Vo(point Ip) and being reflected with velocity +Vo(point Fo). While standing in the Earth

frame, one is very nearly in the COM frame, too. Earth’s COM velocity is a tiny fraction M, / M of the
apparent ball velocity V. For super-balls of mass M,=60gm, the fraction M, / M is 0.06/(6-10**)=10"2°.

Bounce momentum absorbed by Earth is 2 M,V (or M,V if the ball goes “Ka-runch!””) but Earth
absorbs at most a tiny KE of 1M _(V,M, / M_)*, that is, a fraction 10”*° of ball KE: M, (V,)>. Moreover, for

elastic collisions, Mother Earth returns all the KE to M, but absorbs double momentum P=2 M,V,.
However, common experience does not prepare us for X2 easily rebounding M, with more than twice
its drop velocity in Fig. 4.3. (That means M, rises to more than four times its drop height!)

(a) Super-elastic 2nd-body bounce @ (b) 2-Bang Model  (c) n-Body
|‘| 7 Supernova
Superballs
r —1 @
= | = (Still
~ = BiggerQO
| BANG!)

(BiggerQd

Uy

| BANG!)
— BANG! — al”92' %é
A , @ @

Bangq!

@@

Fig. 4.3 n-Body collision experiments. (a) X-2 drop. (b) Independent collision model. (c) Ball towers.

Independent collision models (ICM)
To compute final velocities of M; and M; it helps to idealize the collision of three bodies M;, M,, and M as a

sequence of two separate 2-body collisions that are completely determined by P and KE conservation. First
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M, bounces off Earth M. Only then does M; knock M, to a faster speed as in Fig. 4.3b. The first collision is
labeled Bang-1o1) in Fig. 4.4a followed by Bang-21) in Fig. 4.4b. The first Bang-1() between Earth M, and
M; has a horizontal line like the IoF, line in Fig. 4.2b. The second Bang-2;,) between mass M; and M, has a
line of slope -M4/ M, =-7 for a M; =70gm and M, =10gm (that of a superball and pen, respectively). The
Bang-2,, line is like the IF line in Fig. 3.1 or Fig. 3.2.

L
(a) m2 Velpcity axis Bang-2(]2) J (b)
Vimz | FINAL point -
Bang-1 i P Bang-2
84 o1) 0525 1 8212
2.0 2.0 -7 R
+A
\ /'
v
%
1.0 . 1.0 s/
BEd 7|COM-point at
1% N (0.75,0.75))
7 /
v 7
v 7
7 7
(0,0)]/ 0.5 1.0 0,0) | 7 0.5 ’\ 1.0
o mli Velocity axis / ml Velocity axis
// Vym] // \j\ Vym]
% //
Bang-l((-)]) L Bang—](o]) Bang-2(12)
INIT point at| ,~ FINAL point INIT point at
- +1.0,-1.0)} 3 (+1.0,-1.0)
Ik -1.0

Fig. 4.4 (V1-V,)-plot of 2-Bang collision. (a) M; bounces off floor. (b) M; hits M, head-on.

This approximation is called an independent collision model (ICM) and is one secret to analyzing such 1D-3-
body bang-up that otherwise has one too many unknown velocities to be found by just two equations AP=0
and AKE=0 alone. ICM is exactly true if we initially separate M; and M, so three My, M,, and M, never
collectively bargain for available momentum and energy. ICM also applies to n-ball towers in Fig. 4.3c. They
give very high-energy ejections and serve as classical models for supernovae. (N-body bangs are in Ch.8.)

Velocity geometry suggests a family of X2 solutions as shown in Fig. 4.5 for a range of mass ratio
M;/M,. This is an advantage of geometric solutions. Just a few points in Fig. 4.5a show all elastic (V-V,)
points lie on the 45°-line CPL. Extreme or optimal cases are located in Fig. 4.5b.

Extreme and optimal cases

First, the upper limit for elastic final velocity is V,=3-V; at pt-1 for infinite mass ratio M{/M, — . If
no energy is lost, a particle of dust on a superball could be ejected three times the speed that the ball hits the
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floor. (And, it could go nine (9=3?) times the drop height. However, the elastic ICM model is not so good for
tiny M, due to molecular and static charge. So bouncing balls do not usually embed dust in ceilings!)

Second, an optimal performance case is shown by pt-M where the collision achieves a 100% transfer
of energy to projectile M,. The M-point is the intersection of the CPL line with the V,-axis on which the M-
ball velocity is zero. (V,;=0) There mass ratio is M;/M,=3.0, the slope of the M-line.

M, Velocity axis M, Velocity axis
- 7/ 3 oo
(a) 20 ly, | y (b) \ 3.0 d)/(ZZZZS' 1::0

\
% Line CPL 1  oroo::]
Bang-2 ;) 1L is elastic collision
FINAL )\~ Ap final pt. locus for
points 6 different
7
z momentum
i \ \ \ slopes
7/
or
,‘mass /7 L
s . s ,
1.0 4 ratios // ’/
/ .
M;::M,
7 Lis15::1
A
V4
v
(0,0) // 0_5\ \ \ 1.0 M, Velocity axis V; 1.0 M, Velocity axis V;
-1.0

/ \\} Pis 7::1
//
Cis4::1
/
Start at VZ 7 ° oo
(1.0,-1.0 s is 3::1
-1.0 / _1.0

Fig. 4.5 X2-Final (V1,V,) (a) Final point locus. (b) Infinite ratio pt. | and maximum transfer pt. M.

Another singular point U is for unit ratio M;/M,=1, a familiar ratio for players of billiards or pool. U
undergoes inversion of velocities (+1,-1)-> (-1,+1). (Its COM point lies at origin.) If the U-line is boosted by
(-1) to (0,-2)->(-2,0) it is like a straight elastic pool shot. A 100% of KE transfers from a moving ball to an
equal sized ball that was stationary. The same process at half that speed is (0,-1)-> (-1,0) shown by the
Galileo-shifted line U;-> U, in the lower left hand side of Fig. 4.5b.

Points D between U and M have ball M; knocked to negative velocity by the down-coming M,. Then
M hits the floor (Earth) at velocity —v to rebound at +v. For unit ratio case U, M, and M, rebound quite like a
rigid body. Below U, ball M; rebounds at a speed faster than M, to hit M, again. In cases of low mass ratio,
(M1/M,<<1) mass M; must hit M, many times to turn it around. We will study this effect shortly.

Integrating velocity plots to find position
It is important to see how velocity values of Fig. 4.4b are turned into space-time position plot lines. Consider

the first collision (Bang-110)) in Fig. 4.6a and corresponding space-time paths in Fig. 4.6b.
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Initial velocity Vy;(0)=-1.0 gives a slope (distance)/(time) of an M path but doesn’t tell where is the path or
particle. The same for velocity V,,(0)=-1 of M, in Fig. 4.6a. The paths need location, location,...

Initial position values such as (y1(0)=1, y»(0)=3) locate the paths as shown in Fig. 4.6b. Each path
keeps its slope until a collision (Bang-1;¢)) between M; and the floor occurs at y;(t=1) where its path and the
floor intersect. Then, according to Fig. 4.6a, M; bounces its slope from Vy;=-1 up to Vy;=+1. Meanwhile, the

upper path (M) maintains its down slope of V,,=-1 until it intersects the rising path of M;.

(a) Vy2 VS. Vy] Plot of Bang-1 (b) yvs. t Plot of Bang-1,,
Vv T y
y2 1 :
ai Height
. ———
//// v F y'a.XZS Ceiling at y=7
.10 0.5 7 0.5 Y 1.0
i slope
s
0)=3\ slope +1
/// 05 ¥20) y Bang-2(17)
e (O)=1 29 position
v yiv= /
(‘/y]"/yZ):/.(/]-O,'l' ) 10 (VyiVyZ)_l:(-'-]'O"I'O) Bang-1(¢y) _i?Flﬂat):O Tlme
position r-axis

Bang-1(( 1) Bounces (-1,-1) to (+1,-1) (y=0,l=]) (y:])[:Z)

Fig. 4.6 Plots of 1% collision (Bang-1(10). () Velocity-velocity plot. (b) Space-time plot.

At time (t=2) there is an intersection of paths and the 2" collision (Bang-2;2)) between M, and M, at
space-time point (y,(2)=1, y2(2)=3). This gives V,;=0.5 and V,,=2.5 in Fig. 4.4b or in Fig. 4.7a-b below.
Then to keep M, from flying away we install an elastic ceiling at y=7.

The game becomes more interesting as Bang-3,o) between the ceiling (part of Earth M) is shown in
Fig. 4.7b by a vertical arrow (like an IF line in Fig. 4.2a) reflecting M, to speed V,,=-2.5. Then M, has Bang-
41, between M; and itself that sends it back to the ceiling at a blistering speed of V,,=+2.7 as M; returns
more slowly toward the floor with velocity Vy,=-0.5.

The high speed of M; lets it go to the ceiling for Bang-5,0) and return to knock M; down once more
(Bang-6(;,)) before My hits the floor at V;=-0.9. (Bang-7,0)) Then M, having lost speed to V,,=+1.5 hits the
ceiling (Bang-8o2)) and returns for Bang-9;,) with Mj rising at Vy;=+0.9.

Masses are treated as point-masses that travel along straight lines between collisions in space-time
plots. This is an ideal gravity-free ICM approximation with only straight lines in VV-plots. So we may derive
motion without having to integrate the kinetic equations at the end of Ch. 3.
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(a)

2.0

1.0

(c)

1.0

1w

) -y
s (12) % (%2
2 \ 1 %?g/‘fu‘)
7 5 1.0 &l -0
Bang-5] B
- RN
8% Bang-3(>0) 6(1b)
) i Start at / \
I e (-1.0-1.0) - 17 [
e Startar Bapg-1¢;) - Ba lg'](il)
—0
(b) (4)
Height y
Bang—3(20) y Bang-j’()o) Bang-5(20) Bang- (20)
K M, Ceiling at y=7 \ /\\Ceili g at y=7
slope
= 2 Bang-913)

Bang-4(]2)
5 22

)

Floor at y=0

Time t

Bang-](OI)

Bang—4(]2)
)

¢ ng-6(]2)

Bang-7(0])

Fig. 4.7 Collision sequence. (a-b) Up to Bang-4 ;). (c-d) Up to Bang-9;2).

For comparison, a force-law simulation using Bouncelt of the bang sequence of Fig. 4.7 is shown in

Floor at y=0

Time t

Fig. 4.8. It assumes balls instead of ideal point particles yet compares quite well. (So far.)

42
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Fig. 4.8 Bouncelt simulation up to Bang-9(12) in space-time plot.
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Bang sequences can be very sensitive to ceiling height and initial ball values. In fact, we see examples

of extreme sensitivity to initial values and parameters. Often this leads to classical chaos in which every slip

in accuracy may grow exponentially so that classical mechanics loses predictability.
Running Bouncelt simulation of the 1:7 system for 69 steps fills up the V-V screen with dots that
forms an oval as shown in Fig. 4.9. Among other things, it shows conservation of energy in the form of the

KE ellipse (3.7). Bang P-lines (IF-lines) in Fig. 4.7b must terminate on a KE-ellipse of energy as shown.

The major and minor radii are a =/2-KE / M_ = 242 =2.828 and b= \/Z-KE IM_ = 24/2/7=1.069 and

this checks with Fig. 4.9. The IF-line geometry provides a strange way to construct an ellipse. Later this

geometry shows some deep relations between velocity, momentum and energy.

KE(unitV,,V,) =3 M 1* +5 M,1* =.-8 (for M,=7 and M,=1)

wl - IDkg
wil = kg

Fig. 4.9 Bouncelt simulation up to Bang-6912) in velocity-velocity plot.
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Vector notation and space-space plots
Balance equation (3.4) concisely sums up preceding constructions or plots of elastic collisions.

(VIFIN + \/]"\' ) /2=VCM . VIFIN _ pycomM _ N

or: ‘ " 3.4
(VzF'N +V)" ) j2=yeon VM =2vet —yn (O Bepaes
More concise notation uses vector equations or arrays.
FIN comM IN FIN coM IN COM IN
v, =2V v . v 2V —y Vv v
VI?N —pycom _ VI;N 1s written: (Vlflzv} = [2VCOM _ VZN} - 2(VC0M ] B [vlézv] (4-1)
It saves writing two (=)’s and two (-)’s. Also, each column vector may be labeled by a “fat” letter.
FIN COM IN
v_ |V _—FIN cou _|V _rcom n_ Y1 | _=mw
V= [VIFIN)_V , Ve = (VCOM)—V , v = (vllNJ—v . (4.2)
2 2

Each fat-letter stands for an arrow vector in Fig. 4.10. The Gibbs vector form of equation (1.1.3) or (4.1)

uses fat-v or over-arrow- v.

VN = 2 /oMy or: yeon VAV J;VFIN . (4.3)

Algebra and geometry are helped by fat-v (vector) notation. Fig. 4.10 shows how vector VM is half

FIN of IN velocity v!N and FIN velocity v'™™. (Since this is an elastic collision, the labels

the vector-sum v'N+ v
IN and FIN may be switched.) V<M lies on a (v'N+ vF™™)-parallelogram diagonal. The opposite diagonal

(dashed M;/M, line) bisects (vV'N+ vF'™N) to give ve=v'N+ v'N)2.

7 IN FIN
(VF]I]’V VSI y Ve 0M=V -5 \% VIN-4YFIN

Com

. T
IN IN
s (15) VFIN

Fig. 4.10 Vector collision velocity diagrams (After equation (4.1).)

Note the distinction between vectors v=(vy, v,) above for two particles each in one-dimension and more

common vectors v=(Vy, Vy) (or v=(vx, Vy, V,)) for one particle in two-dimensions (or three dimensions).
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Fig. 4.11 shows how vectors help analyze the results of Bang-1(,;) and Bang-2(; collisions done
before in Fig. 4.7. What’s new is a space-space Y, vs. y; or position-vector y-plot whose paths are called
spatial-trajectories or just plain trajectories. They are made like the space-time paths in Fig. 4.7 by
transferring velocity slopes over to the space plot, but vectors in Fig. 4.11 simplify this geometry.

As the construction steps in Fig. 4.11 show, one easily transfers each velocity vector v(n) from the V,
vs.Vy plot so it points away from start point y(n) in the y, vs. y; plot. Step-0 does this by drawing initial
velocity v(0)=(-1,-1) to point away from our given initial position y(0)=(1,3). Then you extend that v-vector
until it hits the floor (as v(0) does at y(1)=(0,2).), or hits the collision line (y,=y,) (as v(1) does at
y(2)=(1,1).), or hits the ceiling (as v(2) does at y(3)=(2.2,7).). Each such “hit” is a Bang, Bang-1o1) at y(1),
Bang-2.15 at y(2), or Bang-3 ;) at y(3). Then from each Bang-n position point y(n) is drawn the next v(n)-

velocity vector from the V, vs.V; plots. This process continues in Fig. 4.12.

m2

Velocity axis Step-0: At starting position y(0)=(1,3) draw initial velocity v(0)=(-1,-1) line.
Vym2 Step-1: Extend v(0) line to floor point y(0)=(0,?) and draw Bang—](OU
velocity v(1)=(1,-1) line. (Find v(1) using V-V plot.)

Step-2: Extend v(1) line to collision point y(0)=(?,?) and draw Bang—2(12)
P elocity v(2)=(0.5,2.5). (Find v(2) using V-V plot.)

m,-Height

2.0

) |
/ ng-£(12)

‘ Vo-axis

eiling at y,=
S S s

7

7

X
! S S
S =
S
S} &
035 1.0 = Sy
mil il seoff ; NS
Velocity axis g A 0 ’—] y7(0)=3 // 1l
Vyml ’/I 42 s ~

7
Bang-1 (01)

/Smrl() at Bano-](O])
(V1(0)=1, V5(0)=3)

Y -axis

Fig. 4.11 Vector collision velocity diagrams with Velocity-Velocity space and space-space.
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m2 Velocity axis

VymZ

Q

D

<
A
N

[T T
N

i

[ \B ng-4(12 \

Step-2: Extend v(2) line to ceiling point y(3)=(?,7.1) and draw Bang-S(ZO)
velocity v(3)=(1,-1) line. (Find v(3) using V-V plot.)

Step-3: Extend v(3) line to collision point y(4)=(?,?) and draw Bang—4(]2)
velocity v(4)=(0.5,2.5). (Find v(4) using V-V plot.)

Step-4: Extend v(4) line to ceiling point y(4)=(?,7.1) and draw Bang-5(20)
velocity v(5)=(1,-1) line. (Find v(5) using V-V plot.)

Step-5: Extend v(5) line to collision point y(6)=(?,?) and draw Bang-6(]2)
velocity v(6)=(0.5,2.5). (Find v(6) using V-V plot.)
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Fig. 4.12 Vector collision diagrams continued with velocity-time and space-time plots added.
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Some remarks about space-space plots are in order. First, position y(n)-vectors of the Bang-n points
are not drawn in Fig. 4.12 to avoid clutter. Also, ideal (small) masses called point masses are assumed.
Help! I'm trapped in a triangle.

The trajectory in these figures is confined to the triangle above the 45°-collision line. Our model keeps
m, above m;. The right-hand “ceiling” in the figures never is hit because m; always is knocked down by m,
before it touches the ceiling, and m, never sees the floor because m; is in the way. (Quantum theory doesn’t
encourage this feature. Quantum objects pass easily through each other!')
Two balls in 1D vs. one ball in 2D

For ball-Earth collisions involving ceiling or floor, the paths bounce in the space-space plot as though
they’re inside a box. Only one component V, or V, changes each time and only by changing £sign. Off the
floor: (V1 ,V,) changes to (-V4,V,) , off of ceiling: (V1,V,) changes to (V1,-V5). It is like a single particle
bouncing around a pool table. Here (V,V,) acts like (Vx,Vy) in two dimensions, so two particles in one-
dimension use graphs similar to one particle in two dimensions, a useful analogy in quantum theory.
Angle of incidence=Angle of reflection
When paths bounce off the floor and ceiling in the space-space plot, the angle of incidence equals the angle of
reflection just as light rays reflect off mirrors. (Newton imagined little light corpuscles bouncing.) It is
customary to measure path angles from the normal or perpendicular to a mirror so a normal bisects the angle
between the incident and reflected paths.

For m,-m, Bangs off the 45°-collision line, the bisecting line has the slope -M,/M,=-7. It is like having
mirror facets at slope M,/M;=1/7 along the 45°-collision line. For equal-mass-(M;=M=M,) balls, or one ball in

two dimensions, the bisecting line slope at the 45°-collision line is —1 or -45° and the collision line acts like a
unit-slope mirror on a triangular billiard table. It is not quite that simple if M /M, #1.

Consider the two collisions Bang-3,0) and Bang-4;2 in Fig. 4.12. Velocity v(2) bounces off the ceiling in
Bang-3,0 into v(3), whose velocity slope is close to the mass-ratio M;/M, which is 7:1 here. So the next
collision Bang-4;,y bounces v(3) off the diagonal into v(4) which is close to —v(3). It’s followed by another
ceiling bounce Bang-5,q) into v(5) heading down for another collision Bang-6;2).

Bang force

Lower Fig. 4.12 has a velocity vs. time plot next to a space-time plot. (A y-t plot in gray is under the V-t plot,
t00.) Each Bang means a change in velocity for any particle involved in the collision. By Newton’s 2" law
(1.1.9) each change in velocity, v to v+Av, or better, each change in momentum, mv to m(v+Av), requires a

force impulse F-At= m(Av) on each mass that changes. Shortly, we study ways to deal with this F.
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Kinematics versus Dynamics
The velocity-velocity (vq,V,) plots, such as the left side of Fig. 4.12, fall in a category known as

kinematics, or momentum analysis, which is concerned with how things are going, where they’re headed, or
what is their velocity or momentum and energy. (kinos means movement.)
In contrast, the space-time plots, such as the right side of Fig. 4.12, fall in a category known as

dynamics, or coordinate analysis, which is concerned with how things are located, where they are, or what are

their coordinate or position and time schedules. (dynos means change.) We introduced the space-space (X1,X,)
plot, another geometric or trajectory representation of dynamics.

Before going on, let’s compare how kinos and dynos play out in classical Newtonian physics versus
their corresponding roles in quantum physics. This is a preview for later chapters, mainly ones in Unit 3.
Dynos and Kinos: Classical vs. quantum theory

In Newtonian physics, a precise position plot (y, vs. time) lets you find a precise velocity plot, too,
and, a velocity plot (V vs. time) lets you find a position plot if you know starting position values. (We did
just that in Fig. 4.7 and Fig. 4.12.) In calculus, finding position from velocity values is called integration, and
finding velocity from position values is called differentiation. Of the two, the latter is formally easier but
numerically more sensitive and error prone.

In quantum physics, having a precise velocity plot renders a position plot meaningless and vice-
versa! Werner Heisenberg was the first to state this quantum idea, now known as Heisenberg’s Principle. If
you know momentum exactly, that means a uniform wave is everywhere, and all positions are equally
possible. If you know position exactly, that means every momentum is possible, implying a “wave-bomb”
about to blow up the universe! (Fortunately, neither of these extremes readily exist.)

All this sounds crazy to most of us who are born-and-bred Aristotelean-to-Newtonian students. It is
difficult enough to go from Aristotle’s what-you-see-is-what-you-get (WYSIWYG) universe to Newton’s
corpuscular one. A quantum universe is yet another step removed on the WYSIWYG scale.

A way to see the quantum universe (Perhaps, it is the way.) is to learn about wave kinematics and
dynamics without Newtonian corpuscles and see how waves mimic corpuscles and do so quite cleverly. The
quantum universe is a WYDAWYG (waves-you-don’t see-are-what-you-get) world!

So our plan is to cast classical Newtonian kinematics and dynamics in a form that carries over into
vibration and wave kinematics and dynamics. It is done by analogy with classical waves such as sound
waves, water waves, and (most important) light waves. Many classical wave analyses invoke corpuscles
(including, for Newton, light waves) so these analogies, like any analogy, need critical use of an Occam’s

razor that must be sharp. Above all, symmetry principles must be taken seriously.
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Exercise: Construct a history of a 4:1 mass ratio bounce. x;(0)=1.5, x,(0)=3.0, v;(0)=-1, v»(0)=-1

Ceiling height=7.0.(For bottom row: Ceiling height=6.0 ) The 4:1 mass ratio case is surprisingly periodic.
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Exercise: Complete Fig. 4.12 past ““gameover’ point. Ceiling height=3.0

m2 Velocity axis
VymZ

i

Ty

L
A

Sta

m,-Height

Vo-axis
Bang-5(20)
20

Y(7) 2.0 N 7/ Startg at
7/
s QE (1(0)=1y5(0)=3)
S
~
\[ /@5 E
Bdng-P =
A ]2) \Ii
/ S
/ S
\ \ 1.0
3 .0 Bang-l(oj)
ml
7 Velocity axis
‘ 't at Vyml
-1.0.-1.0) \ Floor g
\\3 k-3 2.0
7
D m;-Height
\ y I-CDCIS
\ AN .
\ 7 Velocities
U] A Vy & Vy7—ax1s
AN Lof
V(‘- R RV >0 Bang-6
- 2.0 Bang-Z(]Q) Bang 5( 0 ang-0(12)
0
1.0 Bang{3:20
2.0 Bang-l (975 % pang ;(11.2)
mme
t-axis
30 Bang-3(20) Bang-5(20) Ceiling at y»=3.0
Heights
y; & y,-dxis
2.0
Bang-4(1 )
et
1.0
/ Bang-6(2)
Bang-2 .
) Time
0 Bang-19; Flgor at y=0 t-axis

50



©2008 W. G. Harter Unit 1 Classical Momentum and Energy 51

Chapter 5 Multiple collisions and operator analysis
Analysis of many collisions with very different masses requires an advanced kind of geometry and

algebra involving matrices and symmetry operators. Similar analysis is needed for quantum theory so this is a
good opportunity to learn about these concepts using a classical bang physics that is quite clear-cut.
Doing collisions with matrix products

Fig. 5.1 shows a big mass m,=49 bang a little mass m,=1 more than ten times off the ceiling before
being halted. This tests our collision precision! To check our results we use our previous vector equation

coM

(4.1) to make a matrix equation in (5.1) with v = (myv; + myv,)/M and total mass M = my+ ms.

my, +m,v,
FIN coM IN FIN 2———=-y
v, B 2V -V (4.1 sennte v m, +m, _ 1 [my,—my, +2m,yv, (5.1a)
FIN |~ com IN "—-/repeate AN | T = .
v, VT =, v, Smy tmy, M\ 2my, +m,v, —myv,
m, +m, g

(Let v"=v,andv." =v, here.) Vector equation (5.1a) is converted to matrix equation v =M-v in (5.1b).

(V‘ZZ}ifm‘_mz o ]H (5.1b)
v, M\ 2m, m,—m, J\ v,
Each IN-to-FIN bang is a v =M.v™ operation (5.2a). Matrix product M-N (5.4b) is bang-m following bang-N.
MN:[A B](a]z(Aa+BbJ(5.2a) M_Nz(A B](a c]z(AcH-Bb Ac+ij (5.2b)
C D)\b) \Ca+Db C D\b d) \Ca+Db Cc+Dd

Matrix M operates column-by-column on another matrix N as it does on a vector v. The off-the-ceiling matrix

C =(, ) changes (v, v;) to (vi, -v2) (Odd-n Bang-n(o2)) A 2-ball collision matrix M (Even-n Bang-n;2)) and

ceiling bang € act p-times in matrix products vV=7 = (C:M)” «v = (C-M)+(C-M)«(C-M)-...(C-M)-v t0 give Fig. 5.1.

C-M— 1 0 i m, —m, 2m, _ i m, —m, 2m, _ 1 0)(096 0.04 _ 096 0.04 (5.3)
0 -1)M{ 2m, m, —m, M —2m, m —m, 0 -1){1.96 -0.96 -1.96 0.96
0.96

(5.4) shows (p=5) double-bangs C-M =( ZZ:) following a floor-bounce F = (_1 Oj or 11 bangs in all.

-1.96 +1

v (1 0) (096 0.04) (1 0)(096 004)(1 0)(096 004)(1 0)(096 004)(-1 0 v{N——l
i) o{o -1) {196 —096) (0 -1) {196 —096) (0 -1) (196 —096) (0 -1) (196 —096) 0 +1){, ¥

](INITIAL ©)

pf NI _( 0.96 0.04] ( 0.96 0‘04] ( 096 0. 04] [ 096 0. o4j [ 0.96 o.o4j[ =1 ]
SN ’ _ = —
e 196 0.96) (-1.96 096) (196 0.96) \-1.96 096) (196 0.96){v, ==1)  p
v (096 0.04) (096 0.96 0.04) (096 0.04) v, =092 Now. [ 092 )_[ 0:96 0.04 ( 4)
pIN-1L 1| ~1.96 0.96) (-1.96 0.96) \~1.96 0.96) (-1.96 0.96 )\ v, =-2.92) \-292) (-1.96 096
2 (zdter Bang-})
NN (096 0.04) (096 096 0.04)( v, =0.7664 Noge:| 0-7664)_( 096 0.04)( 092
PPN {-1.96 0.96) | ~1.96 0.96) (~1.96 0.96 )\ v, = —4.606 (—4.606) (-1.96 0.96 )| —2.92
> aftcr Bang-S)
WD) (0,06 0.96 =0.5515 Noge:| 03515 )_( 0:96  0.04)( 07664
SN 11,96 0.96) | ~1.96 0. 96 =-5.924 \-5.924) |-1.96 0.96 )\ —4.606
P dﬁer Bangf7)
pIN-I ( 096 0.04 [ =0.2925

i ] Even after 9 bangs, big m, still has a small upward velocity v,=0.2925.
V2 dfteerg 9

-1.96 0.96 =-6.768
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After Bang-11(o2) big my is nearly stopped and little m; is coming down at v,=-7.071 with all the energy!
FIN-11 _
[vl Jz(vl _0.0100] (5.5)
FIN-11 v, =-7.071
V2 2 (aﬁer Bang-1 ])
Look out below! As m, turns back it crosses v,=0 axis in Fig. 5.1a. The greatest curvature (acceleration or

force) for my is between Bang-8 and Bang-14 in Fig. 5.1b just when m;, is busiest. Geometry works, too!
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Fig. 5.1 Multiple Bangs of the m;=49 and m,=1 superball system. (a) V vs V plot. (b) Y vs time.
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Big m; descends rapidly after being pushed down by m, hits. Soon hits by an exhausted m, become
less frequent. At some point m, ends up slower than m; and can’t hit it again. With no floor both would fall
below y=0 with no further bangs. (We’ll call this a game-over point. As an exercise, you should find it.)

However, if a floor intervenes, then a 2" floor-bounce matrix F=( ;' °,)changes (v1, V) to (-vy, v,) and

0 1
bounces ball-m; back up to start the whole process over again. Ball-m; does another graceful up-then-down
time trajectory very much like the one shown on the right-hand side of Fig. 5.1.

Except for floor bounces, the my-ball in Fig. 5.1 experiences smoother flight than in Fig. 4.12 where a
more massive my-ball jerks it severely. A smaller mass m, has less momentum-per-bang. The result is a
gentler and smoother force cushion for m,. Force and potential field theory will be derived from this.
Rotating in velocity space: Ticking around the clock

Here is an example of geometry and slope ratios being helpful. If you view the ellipse in Fig. 5.1a
lower-edge-on (and do the exercise to finish it!) you may see it as a circular clock with each double-bang (odd-
bangs 1,3,5,...) rotating the v-vector like a clock hand ticking equal-angle jumps around a dial.

This suggests making energy ellipses (2E:m1v12+ m2v22) into energy circles (2E :V12+V22) using
rescaled velocity (V4,V,), as shown here and in Fig. 5.2(a-b).

Vi=v, Vmy,  Vo=v, VM,  where: 2E=myv, 2+ mov, 2=V, 2+ V.2 (5.6)

Big-V variables replace little-v’s by setting (v; =V1/Nmy, v, =V,/Nm,) in matrix relation (5.1).

VlFlN] ]=][ml —my 2m, ][Vlj(s-l)repeated [V]FINl /\/”’Tl}:][ml_mz 2m, ][V] /\/m_]] (57)

FIN,
Va

M\{ 2m, my —my J\ v, M\ 2m, my =y J\ VL, [ \Jm,

FIN,
v, ! /\Jm,

mp-my 48
(b) (c) Lot _#
_14
vy (game over) = 50
N=11 21
19
“17
V)2

(d) (e)

m1v12+m2v22:2E

/
//
2
| V)

Mean Value 5
V1 2 13

E 2E

Fig. 5.2 Velocity-velocity clocks. (a) Energy ellipse (As in Fig. 5.1) (b-c) Energy bang-clock angles
(d) Velocity-squared E-plot. (e) Mass-scaled V-squared E-plot. (f) Integral right triangles
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Clearing scale factors Ymy gives big-V matrix relations so (5.10) below replaces (5.5) above.

FIN, _ FIN, _
v (M T N (N gy (5.8) oy |V T Lp T A Y ey (5.9)
FIN M \Y VFIN2 M V.

V2 2 mm,  m, —n, b3 A -2 mm, m —m, >

The trick is to notice a Pythagorean relation x>+y?=1 for the circular bang-matrix components.

2
(w)2+[2 mlmz] _mtm ~1 (5.10a)
M M my +nyp
So the matrix can be defined using siné and cosd. Our example m;=49 and m,=1 is plotted in Fig. 5.2(c).
- 2
Define: cos0= ( oL j and: sin@ = [ﬂ] (5.10b)
M M

A 1-Bang matrix is a reflection by 6. Our 2-Bang matrix is a rotation by angle -6=-16.26° in big-V space.
v _(cose sin J v (5.11) v/ _( cos@ Sinej v, _[ 0.96 0.04] v (5.12)
VZFIN' “|sin@ —cosO v, ) VZFINZ “|-sin6 cos8 v, “|-1.96 096 Vv, '

(5.12) is a big help in N-double-bang calculations like (5.4). Instead of multiplying the matrix (5.9) by itself

N-times, we just replace 6=16.26° in (5.12) by N6 =81.30° (for N=5) and get answers in (5.13) below pronto!

vy cosNO sinNO \( V| cos50 sin56 \( V| 0.1512  0.9885)( V,
! :(c.M)N.v:( : J 1 :[ ' ] : :( \ ' ] U l(for: N=5) (5.13a)
VZF”VzN —sinN@ cosNO )\ V, —sin50 cos560 )| V, -0.9885 0.1512 ){ V,

Relating V’s to v’s by (V;=v;Vmy, V,=v,\my,) gives (5.1b). Here -y is after floor F gives (vy, v,)=(1,-1).

pi NN oS \J el 5o Lsinse (v 01512 0.1412)( 1) (0010 N=3

1 = ! 1| cos ;sm L P ’ =| for:ym, (5 13b)
SNy %) anse cossg 1\2) (69194 01512)(-1) (7071 M 49

2 -, |—LsinN@ cos N6 —/sm cos n,

Without a 2™ floor-bounce-back operation F, this sequence ends near bang-21 or “game-over.” (How?
Do the exercise!) Matrices can do collision sequences easily and even can “engineer” them.

Statistical mechanics: Average energy

If two balls of mass m,=1 and m;=7 bounce back and forth between wall the small ball goes faster on
the average than the bigger one. How much faster? Let’s assume that arrows on the scaled velocity clock in
Fig. 5.2(b) get uniformly distributed around its circle after many collisions. (Fig. 5.2(b) shows only m;-m,-
bounce arrows. m,-ceiling-bounce-arrows fill up the upper half.) A ball’s velocity and momentum must sum
and average to zero otherwise it will not stay in the region between the floor and the ceiling.

But, what is average squared-velocity v of each ball? An energy plot in the space (V)2 vs (V,)? of
scaled velocity-squared helps to answer this. The result is a 45° line shown in Fig. 5.2(e). In other words
points on the circle in Fig. 5.2(b) get mapped onto the 45° line in Fig. 5.2(e) by KE conservation.

(V1)? + (V2)? = 2 KE = my(v1)® + my(V2)?
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The average of all points on the 45° line is its bisector.
(V1)? = KE = (V,)? or: my(vy)* = KE = my(v,)°

rms rms

This gives the average velocities or root-mean-square-speeds v;"™ and v;"™ of m; and m..

v = ,/ KE /| m v = ,/ KE/ m (5.14)
Each ball, regardless of mass, gets equal share (50% if there are just two) of the total energy. So, if m; is 7

times m, then the mean speed of m, is V7=2.65 times faster than that of m,. The 1% bang in Fig. 4.4 gives 2.5.

Bonus: Rational right triangles
Geometry often offers interesting numerics. In this case, the general right triangle in Fig. 5.2(c) makes

integer or rational fraction solutions to the Pythagorean sum a’+b”=c? such as the famous (a=3,b=4,c=5)
right triangle. Perfect-square mass values (m; and m,=1, 4, 9, 16, 25, 36, 49, 81, 100,...) will give integral
valued right triangle altitude a=\(4 m;-m,), base m;-m,, and hypotenuse m,+m,. Examples in Fig. 5.2 are

(a=14,b=48,c=50) for (m;=49, m,=1) and (a=12,b=5,c¢=13) for (m;=9, m,=4).

Reflections about rotations: It’s all done with mirrors
In 1843 Hamilton discovered his quaternion algebra {1,i,jk}, a mathematical jewel. In 1930 Pauli found

related spinor matrices {1,ox, o, oz». We label Pauli matrix o, as sigma-A=c, (A for Asymmetric) and oy as

sigma-B=cj (B for Balanced). They are Hamilton’s k and i with an imaginary factor i=v-1 attached.

0A=[ Lo ]=GZ=ik (5.15a) of(o 1]=Gx=ii (5.15b)

0 -1 10

Other matrices, sigma-C=a (C for Circular) and sigma-0=a,(0 for “Origin”") are products like oaog OF o>

O'AO'B=((1) _01][(1) (l)j:[o 1]:iccziayzfj (5.150) O'AO'AZO'BO'BZO'CO'C=((1) ?):00:1:1 (5.15d)

-1 0
Hamilton’s {ij,k} square to -1. (i’=j’=k’=-1) That is like i2=-1. But, Pauli-’s square to +1. (1=0,’=c>=c,2.)
We now relate s-matrices to simple super-ball collision reflections and rotations shown in Fig. 5.2.

For example, the o, is our “ceiling bounce” € in (5.3) and our “floor bounce” F in (5.3) is just -oa.

s, {(‘) _01] =c (5.15a) s, :[‘O‘ ?]z F (5.15b)
A geometric view of o (Or -o,) is mirror reflection thru Cartesian x-(or y) axes in Fig. 5.3a while og (0r -op)
is reflection thru mirror planes tilted at angle /4 (or -w4) between x-y axes in Fig. 5.3b. General reflection o,

thru a mirror plane tilted at angle ¢/2 (Fig. 5.3c) is a sum (5.15c) of o cos¢ and o3 sing. We now verify this.

c¢:oAcos¢+oBsin¢:(é _Oljcos¢+(2 (1)jsin¢:(cos¢ sinq)] (5.15¢)

sing —cos¢

Like all reflections, o, must square-to-one. (0'¢2=1) It does so because ocp’=1=cg’ and oacg =-GEOA.
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(a)Reflections o,=(} %), -04=(, ! (b)Reflections og=(] 4), -0p=(}"
_("A =O)l= -0, 0
y—(l) Y=U)R=-0,Y
— . - ]
waaaas20x=0)
VYV YV [sr0r plane =
= (edge-on) - -O'A‘X
=0'A-y
. cos® sing
(c) Og reflection (Sin b cosd
of x-vector:  (cos ...of y-vector:
y G¢'X=(sin¢)
W sing
0/2 o
; cosP >

cos¢ -sing cos¢ sing

(d ){;Sotaztgon:R+ p=OpOA= (sinq) C()sq)) (e)Rotation:R_ ¢=CAOH= ( sing coso

Fig. 5.3 Mirror-reflection geometry (a)+oa, (b) +0s, () o,. Right-and-left-handed rotation (e) o,0a (f) oa0;.

We test 6, 0n unit vectors = (é) and y = (?) and see that matrix algebra checks with geometry in Fig.5.3c.

o R = cos¢  sing . 1) (cos¢ (5.16a) .0 = cos¢  sing . 0) [ sing (5.16b)
¢ sing —cos¢)\0 - sing ' 0= sing —cos¢)\1 - —Cos¢ '
Geometry Fig. 5.3d also shows that a product o,0, Of any two reflection matrices is a rotation matrix R.

In Fig. 5.3d o0, is right-hand rotation R, , but oac,=R_, in Fig. 5.3e is left handed. Rotation angle ¢ is

twice the angle %, between mirrors. Direction of rotation o0, is from 1% mirror (of o) to 2" mirror (of ,).

ol S ) e e b ) e

sing  cos¢ 0 —1)\sing —cos¢ -sing  cos¢

For example, rotation ooy is by +90° and oo IS by -90°. Rotation oa(-oa)=(-6a) o4 IS by +£180°.
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Through the clothing store looking glass

The rotation in V, vs V, space of Fig. 5.2b is a product of ceiling bounce and m;-m, collision that are each a
reflection. An even simpler example of paired-reflection rotation is a clothing store mirror in Fig. 5.4a. It lets
you swing two mirrors like doors to view multiple images of yourself. If you set the angle between mirrors to
#2=30° as in Fig. 5.3 d-e or to 60° as in Fig. 5.4a then you see yourself rotated by twice that angle. Images
are turned 120° counter-clockwise in the right mirror and clockwise (-120°) in the left mirror of the latter.

The sketches in Fig. 5.4a oversimplify the actual images shown by photos of a real mirror pair. The
single reflections for o4 are not shown in the sketch but clearly visible in photos where the saand o, images
both have backwards text and a left hand image of the original right hand. This is corrected in the (-120°)-
rotated cac,, image and the (+120°)-rotated 6,6, image.

A special case is rotation oa(-op)=(-ca) o4 by £180° due to setting mirrors at exactly ¢/2=90° as in Fig.
5.4b. The result is known as a corner-reflector image. Wherever you stand while viewing a 90° corner you
see your image centered and rotated+180° to face you but it is not reflected. A 90° corner image is as others

see you, complete with a readable monogram on your jacket and your right hand on the right side.

How fundamental are reflections?
A product of two reflections is a rotation R,=c,0;, but two rotations just give another rotation R, ,= R,R, and
never a reflection. This makes reflections more basic and productive than rotations.

On the other hand, you cannot do a reflection of a real solid object without entering an Alice-in-
Wonderland looking-glass-world. Moving every atom in a classical object to a reflected position (without
destroying it) is unthinkable! Yet, we easily rotate semi-solid objects (like your eyeballs while reading this).

Waves, on the other hand, are very un-solid and do reflection effortlessly. Rotation takes twice the
effort as seen in the looking glass images of Fig. 5.4. This is why reflection operations are so basic to the

study of wave mechanics, quantum theory, and relativistic symmetry as we will see in later Units 2 and 3.

Symmetry operation R or ¢ is defined by what it does to unit vectors x=(;)and 3-=(?)as o, (5.16) is

done in Fig. 5.3c. That matrix does that same operation to any and all vectorsv:( ):v1§(+v2§/ in the space.

1
vy

. . y
Gyov = V1°'¢"A‘ N v26¢-§' _, c?s¢ v, sing ) _ c?sq) sing || v (5.18)
sin@ —Ccos ¢ sing —coso )\ v,
A way to distinguish rotation and reflection operators is by the determinant det|M| of their matrices.
b u. v
det |M|= det 4 =a-d—bc det| * " l=uv —vou = |u| |v| sin £
c d w, v, Y Y

A determinant of matrix M quantifies the space (area in this case) enclosed by vectors in M*s rows or columns

(u and v enclose a parallelogram in this case).
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. left image right image
(a) ¢: i]20j) rotations rotated by ritated bﬁy’

right image
rotated by
o=+ 12(°

left image
rotated by
-p= -12(°

image image

Original

(b) o= £18(F rotations ejiimage rigRIESRe

rotated by , Totated by
$/2=90°
|

p=+180°
= GA
reflected l

left image | right image
image

rotated b tated by

-0, +0,
+ 0O, A
reflected reflected
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limage image -

image.

Original

¥ Original

Fig. 5.4 Mirror reflections and their rotations with relative angle: (a) 60° (b) 90° (corner reflector images).

A rotation determinant is +1, but a reflection determinant is —1. Reflected area or angle in Fig. 1.3 is negative.

[COW Sin¢J:—cosz¢—Si“2¢:_l

det‘R
sing —cos¢

¢‘:det

[ cos¢ sing

2 )
=cos” ¢ +sin” ¢ =+1 det|c | = det
—sin¢g cosq)) ¢ ¢ ‘ ¢‘

Determinants track the multiplication of matrices. The determinant of a product is a product of determinants.
det|M-N|= (det|M][)(det|N[)= det|N-M|
Thus, two reflections each with det|o|=-1 form a product of det|c, 6,|=(-1)(-1)=+1, that of a rotation. This

also shows a product of rotations cannot make a negative-det-matrix and so cannot be a reflection.
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Unit 1 Classical Momentum and Energy
Exercise Complete Fig. 5.1 to the game-over point where sequence ends without floor bounce.

©2008 W. G. Harter

Gameover | ——— |

(23 not physically possible > 22

without 2nd floor bounce
since v, is slower than v,.)
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Chapter 6 Force and potential energy
Analysis of force is one of the trickier parts of Newtonian mechanics and one that Aristotle seems to

have not done so well. We, like Aristotle, feel we know force after being pushed and pulled around by it most
of our conscious lives. Aristotle related force directly to mass and its motion. If he ever wrote equations then,
perhaps, Aristotle’s equation would be F=Mv.

NOT! Mv is momentum, not force. Galileo and Newton seem to be among the first to realize that force
should be equated to a change in momentum. A famous equation F=Ma equates force to mass or inertia M
times acceleration a, the rate of change of velocity. (This is called Newton’s 2"® law or NEWTON-TWO.)

F=P=M% =Ma (6.0)

MBM force fields and potentials

Motion of my in Fig. 5.1b suggests a kinetic model and a potential force field. Boltzman used this to
derive gas force laws for volume, temperature, and pressure. As a big m;-ball squeezes space (volume) for a
tiny m,-ball in Fig. 6.1, the speed v, and energy */, m,v,? of m, increases. So does the momentum transfer
rate or bang-force on m,. Energy is related to temperature and bang-force is related to pressure. A furiously
bouncing m, is like a single-atom gas getting hot when its Y-space is compressed as in Fig. 6.1b.
(a) Uncompressed [ | (b) Compressed

(Large Y-space) Low energy (Small Y-space) {:Illf}; fnergy
0

“Cool“

| —————
~&— V) small ‘ Vy large
Small momentum transfer

Big momentum transfe
<@—"“Low pressure <_‘- “High pressure*
y;=H-Y > < Y M < Y P

Fig. 6.1 Big mass-m, ball feeling “force-field”” or “pressure’” of small ball rapidly bouncing to-and-fro.

A “double-whammy” hits the m;-ball as it closes in with velocity v, toward m, and the ceiling:
(1) Bang rate B with m;, increases with shrinking distance 2Y traveled by m, back-and-forth to the ceiling.
(2) Increased velocity v, (due to vq) increases momentum m,v, and AP transferred to m, by each bang.
(3) Increased velocity v, (due to v;) increases bang rate even more. It’s really a triple whammy!
If m, is huge (say 1kg) compared to atom or molecule m, (say (2/3)-10"*’kg for an H-atom), the speed
v, of the macro-mass m; may be negligible compared to typical atomic speeds v, of 10° m/s. Then we ignore

effects (2) and (3) due to tiny v, in a so-called isothermal model. An adiabatic model includes them.
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Isothermal model force laws
Atom m, in Fig. 6.1 travels distance 2Y back & forth between m, and ceiling at Y for each bang m,. If

v, is slow, the time At between bangs is 2Y divided by velocity v, of m,. Bang rate B is the inverse: B=1/t.
At = 2Y /v, (bangs per sec) (6.1a) B =1/t = v, /2Y (seconds per bang) (6.1b)

FIN

Each head-on bang of big m; on small m, changes velocity of m, from —v, to +v, as shown in Fig. 6.2.

(for: my>>my): vorN = v+2vy (= v, for: v,>>v;) (6.2)
Added speed for m, is 2vy, twice that of incoming m,. (See V-V-plot Fig. 6.2 for large-m;.) The change AP of

FIN

momentum myV, is the difference between FIN value +m,v, " and IN value —m,vs,.

AP = (MmN =(—myvyp)=2myvo+2myv; (= 2myv, for: vp>>vy) (6.3)
So, if “atomic” velocity v, is large compared to v; it gives a bang-force F=B: AP = AP/At on m;.
BP=AP/At =F = 2myV,(v,/2Y) = mov, /Y (6.4)
So a force field F=2-KE/Y on m; due to m, is proportional to KE=/,m,v,? or temperature T of m,. Boltzman’s
constant k of proportionality (KE=kT) gives an isothermal force law FY=2kT. It is a 1-D version of Boyle’s

ideal gas law: PV=2kT. Here a ceiling tries to keep energy or “temperature” of m, constant in spite of m.

Double-Bang Sequences Vs
for mjp >>nmy axis V(4)
(a) After 2 Bangs (b) After 4 Bangs ﬁ
Increase
by
VZ. / 2vy
axis|y(2) v(2)

|Increase / ,
2l by Y T
// 2 V] %
AN

7 7
7 7
A A
ya ‘ ya
. / .
7 V| axis , V| axis

v(1) V(1)

Start-at Start-at

(+v=vy) (+v=vy)

\ v(3)

Fig. 6.2 Large mass-ratio (m;/m,>>1) bounce sequence. (Compare to Fig. 4.2a.)
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Adiabatic force laws
An elastic ceiling can’t give or take energy so each m; bang adds velocity 2v; to v, at rate B=v,/2Y (6.1). As

m, closes at speed v, it reduces distance 2Y that m, travels. So bang rate B grows due to more v, and less Y.

dv, Vv, dy dy
oy B —oy 22 —vit=H-Y, Y, -2 (65
a0 "oy y=h a T (6%

We cancel time and v, to show this force is inverse-Y- cubed. That’s a lot “harder” than inverse-Y in (6.4).

(6.5h)

2
dvy _ d_Ydﬁ__v dvy 2y 2 dv, dy _const. _ VéNY(t=0) F_mzvg_ (wnst.)
e dy 'dy

dr oy L, Ty Ty y Ty "y
This is called an adiabatic or “fast” force law. Collisions are so fast that an isothermal-seeking “Robin
Hood” in the ceiling hasn’t time to steal m,’s energy when it’s judged too energy-rich or give energy back

when m, becomes energy-poor. So m, can get hotter and hit m, harder and more often as gap Y shrinks.
Conservative forces and potential energy functions

Each force law (5.9) and (6.5) actually conserves the energy of the big-my ball in the long run. By that
we mean that m; will come out with practically the same energy that it had when it went in.

The adiabatic case is easier to see. Each bang conserves energy as demanded by the kinetic energy

(KE) conservation relation (3.5a). Little-ball velocity v,=const./Y from (6.5b) is used here.

1 1 1 1 .
E = Emlvlz +51712V22 = Emlvlz +5M2(CO;S j =const. (66)

The first term is m4’s kinetic energy KE;. The second term, which is really m,’s kinetic energy, is called m;’s

potential energy PE; or just plain PE, and it is labeled U(Y) since it varies according to height Y only.

(6.7)

2

const.j2
Y

1 1
E=KE +PE==mpv>+U(Y) where: PE=U(Y)= Emz(

The PE is energy that m; lends to m, each time m; moves a distance AY closer so m; does a little bit of
work AW on m,. Work is defined as force times distance. (AW=F-AY) Power, the rate of work done, is defined
as force times velocity. Here distance is a small AY and the force F in (6.5b) is m, const.2/Y3. But “work” force
might be plus-or-minus (£)m, const.2/Y3. Which sign? (+) or (—)? Conflicting sign conventions make force-
physics confusing. The sign depends on how force and direction are defined. (It’s all relative!)

Is it +or-? Physicist vs. mathematician and the 3° law
A physicist’s force FPMYS s what is felt by a free object (Here that’s m;.) whose motion is driven by

math

force field F=FP"®. A mathematician’s force F™™ is what is needed to hold back the object in the force field.

(How apropos! A physicist lets it go but a constipated mathematician holds it back!) They differ by (%) sign
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only, that is, F™" =-F"™* and F™" s the equal-but-opposite force by an object (m; here) on its field or force
agent(s) (m, here). (This is essentially Newton’s 3" law. (NEWTON-THREE) )

Force is momentum flow. Momentum is stuff that’s conserved, so the flow rate FPYS of this stuff
into an object m; must be balanced by an equal-but-opposite negative flow, F™" =-F™* out of the forcing
agent(s) (m, here), and, vice versa, whatever flows out of m; flows into m,. Momentum p=mv and force F are
both vector quantities and a £sign gives direction to-or-fro, another confusing (x) sign to bother us. But,
whatever the flow rate F*™* seen by m;, then m, sees the opposite rate F™" =-FP"°,

Let’s define positive Y and F direction to be away from the ceiling in Fig. 6.1. So incoming m; has
negative velocity v,=-AY/At, but after m; reverses V=AY/At is positive. Positive V=-v; (increasing Y) and
positive FP™* means both momentum and energy of m, are being increased by force F*™*, Each bit of energy

or work AW=F""AY gained by m, is energy lost by the force-field’s potential “bank” that is m,. (AU=-AW)

2
s v s ~ (const.)
AW=FPP"-AY=-AU  where: F"""=F(Y)=m,~——"— (6.8)
Y

In other words, power IT=F"™*V into m, is power (- AU/At ) out of the field. (V=AY/At is m;‘s velocity.)

_pphys ,_ AU _ AUAY AU . pphys _ AU
IT =F V= A AY A Ayv where: F =AY

But is this consistent? Does force F*™* in (6.8) really equal minus the slope of potential (6.7)? We check.

(6.9)

2 . 2 2
hys (const.) consistent s AU d 1 const. (const.)
e VA 1 i Al

= e 5 (810)

Well,Yes!! Note that F=- AU/AY needs that */, to be in kinetic energy '/, MoV, (See discussion of (3.5).)
Isothermal “Robin Hood”and “Fed rules”

The isothermal case is a weird one. The little “force-field agent” m, maintains it kinetic energy at
around the same initial value %/, m,v, no matter how much the big mass m; loses or gains kinetic energy.

It’s as though a “Robin-Hood” in the ceiling acts like a big Federal Reserve Bank. (““The Fed.”)
Whatever energy m, earns from m, over and above a some fixed deposit é(mzvzz) is taken and stored away,

but if m,‘s deposits falls below that value, the Fed makes up the difference. This energy or deposit limit is
determined by a prevailing allowed “temperature” of the ceiling or the current money supply. (I’m not
making this up. It’s what happens in nature and very roughly what happens in our economy. It becomes a
problem if the Fed stops being Robin Hood and becomes robbing hood!)

Under ideal conditions, force agent m, makes a much “softer” 1/Y force field F=m,v,2/Y given by

(5.9). Definition (6.9) of force F as negative-U-slope -AU/AY then gives a logeY=InY potential.
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2
phys_ V2~ _ AU — 2
F my Y AY implies: U =-myvy ln(Y) (611)

It may seem weird that we can define a useful potential while energy-funds are being siphoned in and
out. Nevertheless, the ceiling “Robin Hood” is true to his word. (Analogy with “The Fed” ends here!) He
puts back all the energy that m; gave up to m, (the potential U) on the way in, so that, except for small-
change or “tips” left with m, after the final parting collision, m; recovers the energy it originally had. Such a
force field, if determined by such a reliable potential, is also a conservative one. We discuss later the details of

what is needed for general multi-dimensional fields to be labeled conservative.

Oscillator force field and potential
Consider a mass m; between two walls and two little speeding m, masses as in Fig. 5.5. m, feels a

force like that of an oscillator. As m; moves distance x off center the left wall space expands to Y+x and the

right wall space shrinks to Y-x. Two opposing forces (6.11) then are unbalanced. (Only X% x*,... terms cancel.)

ontal:%_lizf[l_x_l_xz_x3m:|_f|:1+x+x2+x3_,.:|=—2f-x—2f.x3_
X - X

Here we let Y=1 be a unit interval and assume an isothermal kinetic constant x =2 = 2m,v? for each side. For

small x (x<<1) the force F°@ has a linear or Hooke’s law form, and the potential U is quadratic.

aUtotul 1
Ftotal ~ —k'x —_ a Utotal ~ Ek'-xz — _JFtataldx (612)
X
a center x>0: Negative yrestoring force [ orce otentia
) 0 11 0: Negat ‘: toring F Potential
Ftotal U'total
:‘\‘.’Hot”
1 . =
“Lowpressure“_» High pressure
x |
—
Y+x ! 4
(Y+x) > < (Y-x) |
Y Y Ftotal(x)
1 (b) Equilibrium x=0: Balanced d
Medlum :Ifedlum “
D -@BL
“Medium pressure “Medium pressure x £0
Y Y

Fig. 6.3 Oscillator force and potential (a) Off center with (-)force (b) On center at equilibrium.
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Harmonic oscillator forces and potentials are, perhaps, the most famous and useful ones in all of
physics and come up more often in this book than any other. Normally, they are introduced as a mass on a
spring, rubber band, or pendulum, only rarely (if ever) as three bouncy masses like Fig. 6.3. The 2" most
useful field is probably the Coulomb potential U=-k/r and force F=k/r?. (See Ch. 7 for electrostatics and
Earth gravity, which also have oscillator potentials at their cores.) After that, the 2D Coulomb U=k:In(r) and
F=k/r may be the next most useful field. (The latter is like (6.11). A pair of them underlies Fig. 6.3.)

You should be warned that an oscillator like Fig. 6.3 is not as simple as it might appear, and as we will
see, neither are springs, rubber bands, or pendulums. Also, balls bouncing against moving objects are
particularly dicey devices. A simple model with one ball and one oscillating wall is called a Fermi oscillator,
and is quite chaotic. The thing in Fig. 6.3 can be even more devilish if m, is not very small. Caveat emptor!
The simplest force field F=const.

We have mentioned power-law forces Fyqin=kly*=ky? (6.5), Fcou=k/y*=ky?, Fissr=kly=ky™ (6.4), and

lastly F,.=-ky (6.12), but have forgotten the simplest, namely zero power law F.,.s=k =ky°. This last one is

like a constant near-Earth-surface gravity force F_ = —gyu =mg =-m|g| on a mass m. ( (-) sign for downward.)

Acceleration of gravity near Earth’s surface is nearly -10 meters per second per second and very nearly —9.8.
(9=-9.7997m/s?) All terrestrial objects experience this whether they are bundled together or not.
All power-law forces F=ky” have power-law potentials U=-[F-dy=-ky’/(p+1), except for p=-1 where

Fisor=K/y has a logarithmic Ui.r=-k In(y). (6.11) Earth-surface potentialu = mgh is linear in height y=h. This
we use to compute height of a superball toss by equating its floor level KE=1/2mV? to maximum PE=mgh.

9N ax =3 Vioor (6.133) V00r = 420N (6.13b)

floor max

Ejection height goes as the square of ejection velocity. A 3-fold velocity gain means 3°=9-fold height gain.

Action is conserved (sort of)
It is remarkable that a bouncing mass has a physical property called action S = ¢ P-dx that is more or
less constant even if its position x momentum P and kinetic energy KE are driven crazy. Action is defined by

the area of a one-cycle loop swept out in a momentum vs position phase-plot (P vs x). That is analogous to an

energy or power-plot of force vs position (F vs x) whose loop area{ F-dx is work per cycle.

Conservation of momentum and conservation of energy are each a rigorously obeyed axiom or
theorem for an isolated classical system. However, conservation of action is “more or less” or “sort of” and
“it depends” for a driven system. The concept of action is both subtle and deep and it lies at the heart of

qguantum theory for how we affect and are affected by the world around us.
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Here we use a geometric construction of a bouncing ball trajectory to quantify action conservation or
lack thereof. We suppose the little mass m, is caught as before in Fig. 5.1 and Fig. 6.1 between a rock and a
hard place, that is, bouncing between a big mass m; (moving in at a constant velocity v;= 1 from the left) and
a hard elastic wall. The big ball path is indicated in Fig. 6.4 by a line of slope=1= v, that hits an initially fixed
m, following a vertical line (slope=0=v,) that then gets knocked up to a line of slope=2=v, (after Bang(1)).
Throughout the imagined collision sequence we suppose the ball is so much more massive that its change in
velocity is not noticeable. This is in spite of the fact that it is absorbing more and more momentum from the
little ball with each bang. (Surely something breaks eventually!)

Each time the small ball is banged elastically by the big one it picks up two more units of velocity that
it maintains, apart from change in sign, through its subsequent bang with the elastic wall. Each time it returns
for more, is banged again, and increases its speed by two units.

The horizontal dashed lines in Fig. 6.4 indicate the range Ax available to the small ball at each instant
of its bang with the wall. Note that the product of the range Ax and the speed v, is a constant three units even
as spatial range Ax rapidly decreases and the velocity range Av=2|v,| increases just as rapidly.

AX Vo =3.0 = AX AV/2

This is an example of conservation of action mentioned before. If we define the small ball’s “range of
velocity” by Av=2|v,| then this relation takes the form of a weird kind of uncertainty relation, that is, it looks
like Heisenberg’s famous minimum uncertainty relation Ax Ap =z=(constant) for position and momentum. It
happens that the two are related even though the constant used by Heisenberg is an unimaginably tiny Planck
constant (i~10%4Js) compared to a constant 3.0 appearing above. (Ours has gadzillions of wave quanta!)

The geometry behind this relation is exposed in Fig. 6.4 (b). It is obtained by considering intersections
between lines of integral speeds or slopes v, =1, £2, £3, 4, £5, £6, +7,... that are relevant to the bang
sequence. They are also relevant to quantum theory where the speeds of a particle in a box are indeed
guantized to integers times a tiny number. (This is where that tiny 7 comes in.) That is simply a reflection
(pun intended) of the fact that mutually reflecting waves require that an integral (or half-integral) number of
the wavelengths fit perfectly between mirroring containment walls or cavities.

Now we might ask if the action area Ax Av in Fig. 6.4c-e stays the same if the big-ball speed v, varies.
Action variance was argued hotly by Einstein and the “quantum gang” at the1920 Solvay Conference. They
imagined a hotel chandelier being jerked up and down by a clerk upstairs. They concluded that if the clerk
could not detect the swinging pendulum phase, then he would only rarely change its action.

Action and its wiggly antics will be discussed later, particularly in Unit 2 and 3.



©2008 W. G. Harter Chapter6. Force and Potential Energy 68

(a) Big ball moves in and traps small ball between it and The Wall
o / Space —>
T ¢ v2=0 The Wall

R

Time vy=2

: Space —>
Time P
i BB /)
Gl ////]
(c) Big space || Vi2 (d) Decreasing space || _\\ Viz (e) Small space L V>
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B 2 I A Vo Y = const. /
ang (1)]2 // \\ v (] | \y v \\\ %
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\\4_//Ban 2) T /Bang (n+1),,
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Fig. 6.4 Bang sequence for small ball between big ball and wall. (a) Spacetime paths. (b) Geometry



©2008 W. G. Harter Unit 1 Classical Momentum and Energy 69
Monster mass M; and Galilean symmetry (It’s deja vu all over, again.)

“Monster mass” M, bongs hapless m,-atoms in Fig. 6.4 using Galilean symmetry. To show symmetry we
imagine two head-on monster M, ‘s going at +\/,=+1 in Fig. 6.5. A mirror image of Fig. 6.4 lies in extended m,-
path lines. The red paths of even integral velocity v,=0, +2, +4,... are copies of Fig. 6.4 paths. Odd integral
velocity v,=+1, £3,... paths mesh with even ones to make a full grid. Any initial v, between +V, has a path on

the grid. A blue path is drawn thru a series of bongs with v,=-0.2,+2.2,-4.2,+6.2,...in Fig. 6.5.

27002 _
2=0 /1 v2=0

vp=-1 vo=+1
ViE+] \ 22 Vi=1

e

Fig. 6.5 Symmetric pair of head-on V,=+1 monster-m,;-masses pong tiny-m,-atoms to higher speeds.

Monster M,/m,-ratios have simple V,-v,-plots shown in Fig. 6.6a. (Recall Fig. 6.2.) It simply adds 2V,
to incoming speed v, of atom m, and M, bounces m, out at that speed. Monster M, is the COM and its path
bisects in-and-out paths as it balances v' and v"™ paths of atom m,. (In its COM frame each bong is simply a
change of sign for velocity. Recall balance in Fig. 2.6.)

The geometry of adding slope 2V, to speed v, is shown if Fig. 6.6a. It is based on the unit square and
unit velocity V,=1. Incoming -v'", is an altitude of a right triangle with vertical base V,=1, and it is reflected
thru the square diagonal to +v", then added to 2V, to give sum vi"™,=v'",+2V, as long side of the triangle with
right side vertical base ;=1 in Fig. 6.6a. The hypotenuse is the final path with final slope v"",. Each m,-path
and slope originates at pt-B_or else pt-B, ends of unit square base bisected by unit slope path of M, at B,. Fig.

6.6.c shows quadrilateral B B.A,A_bisected by M, path B,CA,. Similar triangles explain multiple coincidences.
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Fig. 6.6 Bisection geometry of Fig. 6.5.

Fig. 6.5 contains time plots for paths in different Galilean reference frames. An excerpt plot in Fig. 6.7a
shows how Fig. 6.4 (copied in Fig. 6.7b) appears to a frame traveling at V=1 with each velocity in Fig. 6.7b
reduced by V=1 in Fig. 6.7a. Also shown in Fig. 6.7a is the extension of lines connecting the two plots and
this highlight s this remarkable symmetry. All collision times in Fig. 6.7a match perfectly with ones in Fig.

6.7b though all velocities are shifted. This is as Galileo’s symmetry would have it.

The Wall

Fig. 6.7 (a) Galilean frame shift by frame velocity V=1 of collision sequence in Fig. 6.4 (shown in (b)).
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Chapter 7 Interaction Forces and Potentials in Collisions

Derivation of force field potentials in Ch. 6 used elementary bangs by tiny m,’s on a big M;. (Ch.5)
We predicted elementary bangs between a ball and floor, ceiling, or another ball without knowing potentials.
However, three (or more) objects having a ménage a trois are not so easy to predict, and outcomes of 3-body
interactions depend sensitively on whatever interaction potential or force law exists between participants.
Geometry of superball force law

When a superball or any elastic sphere hits the floor or ceiling it dents itself and, maybe it dents the
surface it’s hitting a little bit, too. But, if the floor, wall, or ceiling is much harder than the ball, we might
assume only the ball develops a “flat-tire” as shown in the Figure 7.1a below.

/”—“—5\\
- ~
- N
7’ N
/ \

R N
/\ \
/ \
r T \
1 _ \
lx 2R X \
] I
\ 1
\ /
\ /
\ /
\ //
\\ ,

S //
\\ ’/

Fig. 7.1 Superball collides with solid wall. (a) “flat” (b) Saggital (*‘Bow’”) mean geometry

The radius r of the ball’s “flat” is indicated by an altitude in Fig. 7.1b and is the geometric mean of the
depression distance x and the remainder 2R-x of the ball diameter. (Recall Fig. 1.4.8.)

r:Jx(ZR—x)) (zm for: x<<R) (7-1a)

Solving approximately for degression X gives the Saggital (“bow’) formula. (It’s used for thin lenses.)
X = ;—R for: x <<R (7.1b)

How much force F(x) is needed to depress the ball by distance x?

The answer is, “It depends.” A hollow rubber ball or balloon with pressure differential P would push
back with a force equal to the product of pressure P and area of contact A=xr>.

Foatioon(X) = PA = P zr? = 27PRx (7.2)

This is a linear force law like the gravity law (1.4.11) inside the Earth sketched in Fig. 1.4.12.

However, the pressure and force in a superball or any solid varies non-linearly with x. Even if force

varies only linearly with volume of the x-dent in Fig. 7.1b, it’s still non-linear in x.
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Volume(X) = jé( Trldx = jg nx(ZR - x)dx

Rrx? (for:X<<R
= Jg 2 R1txdx — jé( cldx = RiX? — ﬁ - (f ) (7.4)

4
3 JTRY (for: X=2R)
(Here we check that our integral gives the whole ball volume 4zr®/; for x=2R. That’s the equivalent of
crushing the superball into a black hole (or black sheet). It’s likely to complain before we get that far!)
Dynamics of superball force: The Project-Ball story

One of the interesting things to come out of Project Ball was the superball’s peculiar force law
behavior. The USC mechanical engineering department took an interest in this crazy project when it showed
up on NBC News “Ray Duncan Reports.” They offered to measure the superball force curve on a precise
tension meter. But, that curve never worked. It didn’t predict the bounces the students were observing.
Nothing was making any sense even though we had a big analog computer working it all out.

That was a low point in the project. Even with all this fancy experiment, computers, and theory, |
looked like I didn’t know what the heck | was doing. So, what’s new? That’s science most of the time! But,
to make things worse we got kicked out of the Project Ballroom, the old basement Lab 69 that we’d squatted
in. It was up to be repainted so we had to drag all our stuff out of there and store it down the hall.

Well, after that I had to do something with the students so I arranged for a visit to Whammo Mfg. Co.
in San Gabriel, California, where superballs and other goofy stuff was made. The Whammo man said maybe
we could talk business about selling our super-elastic effects as a toy. So, a day or so later, with $$-signs in
our eyes, we piled into our cars and drove down to the plant.

The trip to Whammo

By the time we got there, the inventors were on an all-day alpha-wave break. That’s a 60’s fad where
you try to increase your creativity by looking at your brain waves. | said, “Maybe, | could use some of that
stuff!” But, the company lawyer wanted to show us around. After awhile, he said he thought our invention
was cool, but its product liability potential looked too high to make a commercial toy.

We all must have looked pretty sad after hearing that. So he went in a back room and dragged out a big
collection of superballs that had been rejected for one reason or another. “Here, take as many as you want!”
We thanked him and loaded the balls into some boxes and headed back to USC.

When we got back to Rm 69, the painters were done but the paint wasn’t quite dry. So | said, "Let’s
drop off our new balls so we’re ready for tomorrow.” The students took “drop” to mean literally and
dumped them out of the boxes into the empty room. Right away the balls bounced into the wet paint and
made lots of little polka-dot spots all over the floor and wall. What fun! What a mess.

Eureka! Polka-dots save Project Ball

But, suddenly, it occurred to me what was wrong with our force analysis and how we might fix it. The
engineers had carefully and slowly produced a static or isothermal force curve, but what we really needed
was a fast-response or adiabatic force curve. | thought, “Maybe that force law can be told by the polka-dots!™
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From a polka-dot radius r made by a superball of mass M and radius R dropped from a height h we could
relate gravitational potential energy Mgh to an adiabatic superball potential energy U, that is, find a U(x)
curve for each value of x=r%2R in formula (7.1b) by plotting height h against x given by dot radius r. Then
the adiabatic force curve F(x) can be found from the slope dU(x)/dx of a U(x) curve.

Just as the adiabatic F=1/Y? in (6.5) force curve is steeper and curvier than the isothermal F=1/Y in
(6.4) so was the polka-dot bounce curve steeper than what we had been using. We stuck our new F(x) on the
analog computer’s diode function generator and started getting good predictions. Now we could work out the
deadly Model-X3, a 3-ball super tower! (This is described Chapter 8.)

The “polka-dot™ potential

First, let’s look carefully at this “polka-dot” potential theory. What we did, like most of physics, was
an approximation. Using gravitational potential to estimate superball U(x) is a neat trick only if the superball
forces are large and quick compared to the gravitational force or weight mg of the ball.

Fig. 7.2a shows a massive (Bowling-ball sized) superball at its (V=0) drop point h, where potential
energy is mgh. Kinetic energy rises from zero as the ball falls down until it passes a point where the upward
floor force cancels the ball’s downward weight mg. That point-xysic Of static equilibrium is at the bottom of
the total potential energy curve in Fig. 7.2b. The ball would sit still if put gently at Xs.sic With no Kinetic
energy. It’s a point of zero slope since total force F(Xsatic) 1S zero there.

After passing Xgaiic the ball slows down due to negative F(X< Xgatic). Finally it will have to stop at its
maximum penetration point X,., Where the energy line intersects the total potential line in Fig. 7.2c. Now the
ball’s gravity potential mg has been converted completely into potential energy U(Xmax) (and frictional heat
that we’re ignoring) due to compressing rubber a distance Xy into the ball.

In the example, the ball’s weight is almost as large as the inertial bang-force driving the ball into the
floor. An indication of this is how flat the ball is in Fig. 7.2 b when its weight and compressive force are
equal. A standard superball sits stiffly on a table with no noticeable depression, and mg is a tiny part of the
total force, and because it’s so stiff, its bang force is hundreds of times its weight and lasts only a few
hundredths of a second. Very stiff rebounding potentials are shown in the later Fig. 7.3 and Fig. 7.4 b in
which gravity is a negligible force after such a stiff rebound begins.

By comparison, the ball in Fig. 7.2 is heavy and its potential is not so stiff. Instead it is so soft it has
a big “flat” if sits still with zero KE at X.sic just as it does when passing that point in Fig. 7.2 b. The collision
shown in Fig. 7.2 a-c is less like a bang and more like a lingering smooch! Similarly soft collision energy for a
linear rebound force and quadratic potential is shown in parts (d) and (e) of Fig. 7.4.
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Force geometry: Work and impulse vs. energy and momentum

TV daredevils jump off 30-meter towers and belly-flop into kiddy-pools that are less than 1 meter
deep. What a way to earn a buck! And, how do they ever survive such stunts?

Two important physical quantities tell about survival chances. The first is the product F-x of force-
times-distance, or, more precisely, the integral [Fdx of force over distance. The second is the product F-t of
force-times-time, or, more precisely, the integral [Fdt of force over time. (Recall the fundamental Galileo-
Newton relations (3.10) and (6.0).)

The first quantity [Fdx is work done or energy -U(x) acquired. U(x) is area under an -F vs. x plot.

Work=W = JF(x) dx = Energy acquired = Area of F(x)=-U(x) (7.5a)
If energy is stored as potential energy U(x), then force -F(x) is the slope of a U(x) plot at point x.
Fy=-" (7.5b)

(Recall the discussion of force and potential leading up to (6.10).)
A second quantity [Fdt is impulse done or momentum P(t) acquired and area under an F vs.t plot.
Impulse=P = IF(I) dt = Momentum acquired = Area of F(t)= P(1) (7.5¢)
If momentum is stored in kinetic velocity V(t)= P(t)/M then force F(t) is slope of the P(t) plot at time t.

dP(t)
== (7.5d)

The time equation (7.5c-d) is just Newton’s 2" law first given by (6.0). The space force law (7.5a-b) is just
the slope rule first stated (with the physicist’s minus-sign) in (6.9). Both laws deal with conserved stuff. If
you, a daredevil, acquire x of this stuff (energy or momentum) sooner or later you are going to have to find
something or someone help you get rid of x. Or else!

A daredevil falling 30 meters acquires energy equal to gravity force (body weight Mg) times thirty
meters. Fig. 7.3a-b plots a constant F=-Mg and a linear potential U(y)=Mg y from y=30 to y=0. The 1m
kiddy-pool must get rid of the 30Mg (Newton meters) of energy in one meter, by applying a force of 30Mg
(Newtons) steadily over the entire meter from y=0 to y=-1. (That’s a 30g~300ms2 deceleration. Human
survivability is somewhere around 50g.) An alternative is to get rid of that energy in the concrete below the
pool in about Imillimeter, a 30 thousand g deceleration. (That is not survivable!)

F(r) =

Kiddy-pool versus trampoline

Suppose the daredevil falls onto a special trampoline that applies exactly the same constant force as
the kiddy-pool, but stores the energy as potential instead of dissipating it all by dousing the audience with a
huge splash. The trampoline could then toss the daredevil back up to the 30 m tower to do the fall over again.
(My gosh! What a daredevil has to do to satisfy a sated TV audience these days!) Such a potential is plotted
by a steep-slope line U(y)=-30y in Fig. 7.3b.



©2008 W. G. Harter Chapter7. Interaction Forces 78

(a) 30 | (c) 30
Strong [ .
Fore Force | (Force=30) X (Distance=1) Forc (Force=6) X (Distance=5)
orce Ly orce 20
F(x) cancels F(x) Mediurp cancels
(Units (Units Force
of Mg [T0 W Forcek-1) X (Distande=30) of Mg 10| (Force=-1) x (Distance=30)
Newtons) Gentle Newtons) Gentle
1 Lorce odl Force
-1 10m ‘\20 30\m ‘ 10 n\20 m  30lm
Are{::+30 Area?ﬁO CjOl’lS[Cll’lt FOI’?'@ Area=-30
Linear Potential Area=+.
M. :
(b) 304, odels: ) E7
Potential ; lop[e) F(x)=k, Potential S,j,éum
U(x) 50 Gentle U(x)=-kx U(x) ' Gentle
slope 20 slope
Potential Patential
10 Jjump =-30 10 Jump =-30
Poteptial v Potential '
Jump =+30 10m 20m  30\m Jjump =3+30 10 n 20m  30m

Fig. 7.3 Force and potential plots. (a-b) Strong (30g) deceleration. (c-d) Medium (6g) deceleration.

Suppose the Americans for Humane Daredevilry (AHD) demand that the deceleration distance be
increased from 1 meter to 5 meters. (That’s what Olympic divers get for a 10 m fall.) As shown in Fig. 7.3c
this reduces the deceleration by a factor of 5 from 30g to only 6g. (A walk in the park!) The sloping U(x)
lines are tallying the area-accumulation under the F(x) lines. Starting on the right hand side, U(x) drops by 30
units in 30 meters in Fig. 7.3b to correspond to the —30 units of area under the gravitational F=-1 unit line for
the same distance in Fig. 7.3a. The daredevil’s kinetic energy must increase by 30 units to conserve total
energy. So trampoline or pool is hit at 24 meters per sec. or 55 mph. (Recall (6.13).)

'/, M V*=30 Mg or: V=v(60g) = \V588=24.2m/sec.
Getting rid of this 30 J potential deficit means climbing a steep 30 J high slope between y=0 and -1 in Fig.
7.3b or a medium slope of the same height between y=0 and -5 in Fig. 7.3d. Both cases have the same +30 J
area under a force line, but having 5 meters instead of just one reduces the force to *%/;=6.

Time functions F(t) and MV(t)=P(t) relate to F(x) and U(x) usmg Newton I1: F=M%/4 in (7.5d).

Ux)=[F(x)dx =M d—dx jM—dV | Mvdv —MVT —const. OF: MVT +U(x) = const. (7.6a)
P(t)=[F(t)dt= jM;dt = [MdV = MV + const. or: P(t)— MV (t) = const. (7.6b)

The first relation is total energy conservation (KE+PE=const.) first stated in (6.6) and (6.7).
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Linear force law, again (But, with constant gravity, too)

Let’s imagine the AHD demands further protection of daredevils from themselves by outlawing constant-
force targets that turn on a full force suddenly upon entry. Claiming that “high-jerk” is bad, the AHD requires
linear-force targets, instead. Physicists comply happily since a harmonic-oscillator linear-force-quadratic-
potential (6.12) is the favorite force law. It also describes inside-Earth oscillation in Chapter 9.

Plots of linear-force-quadratic-potentials are shown in Fig. 7.4. Just like the preceding Fig. 7.3, a
constant gravitational force Fy,,=-Mg is present both in and out of the (y<0)-region where the linear F=-ky
force and the U(y)="/,ky? potential exist as a sum of constant and linear forces for (y<O0).

M;
FTotal — p8rav +Ftarget — —Mg (y 2 O) UTotal =8rav +Utarget — &Y 1 ) (y 2 O)
—Mg—ky(y<0) ng+5ky (y<0)
(7.7a) (7.7b)

If a linear potential b-y is added to a quadratic a-y* potential we get the same parabolic curve U=a-y?, but that
curve is shifted to the left by y,,ix=-b/2a and down by Ug,,=-b*/4a as follows.

2 2
! 2 b b 2
U™ (y) = ay® + by = a(y + —] ~—=a(y=von) +Ugip (7.8a)
2a 4a
2 2
b b b
Yshift =5 Ushifr = 1 —a(_za] = —U( yshiﬁ) (7.8b)

The nose or tip of the parabola, which is the equilibrium resting point, follows an upside-down copy of the
U-parabola itself! This important geometric fact is shown in Fig. 7.4. The geometry does not reveal itself
until we look in Fig. 7.4e at a “soft ball” that is soft enough to clearly show its gravitational shifts. A hard
superball is more like Fig. 7.4b that barely shows such a small shift.

Hardball total potential is u(y)=8y?+y with a total force function f(y)=-16y-1 in graph units of Fig.
7.4(a-b). A medium total potential is u(y)=y?+y with a total force function f(y)=-2y-1 is plotted in Fig. 7.4(c-
d). The latter clearly shows the equilibrium or lowest “sag” point of zero force. The softball total potential is
u(y)=(1/4)y>+y with a total force function f(y)=-(1/2)y-1 in Fig. 7.4e. The hardball potential requires about 6
meters (Y=-6 or y=-0.6) to cancel the energy from the 30 meter fall (from Y=30 or y=3) and maximum force
of about F=10. This is much more than the constant F=6 that stopped the same daredevil in 5 meters in Fig.
7.3c because a linear force has only the area under a triangle which has a factor of */,. Here */,(F=10)(Y=-6)
gives the necessary energy of 30 Joules. So the AHD ruling has actually increased the maximum force on the
daredevil! (But, only during the final milliseconds is F large.)

Note that the focus of the U(y) parabola is on the y-axis because we plot gravity with slope=1. Can
you find a geometrical a way to locate that focus given some allowed stopping distance?

Parabolic geometry of an oscillator potential subject to a uniform (or nearly uniform) force
field is an important one in physics. Electronic charges pinned to an atomic potential well behave like
oscillators in an electric field of a passing light wave. Generally the light wavelength of 0.5 micron (0.5E-6m)
is several thousand times as long as the atomic radius of a few Angstrom (1E-10m). So the effective potential
is a rigid parabola like Fig. 7.4e shifting to and fro and up and down at some frequency.
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Fig. 7.4 Linear deceleration force after constant falling force. (a-b) Hard (c-d) Medium (e)Soft

As mentioned before, a superball force function is non-linear and approximated by Fy.u(y)~y* as
plotted in Fig. 7.2 and Fig. 7.5 below. Compare this to the linear balloon-like force curve Fpaioon(y)~Y* in Fig.
7.4e above. (Recall (7.2).) Note that Fna00n(Y) is @ pair of straight lines bent at contact point y=0, while
Foan(y) has a long flat region below y=0. A flat in F(y) assures super-elastic bounce as we’ll see. For either
case, the force integrals J[F*®@(y)dy and the areas they represent cancel between any two points y=h and

80
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Y=Ymax that have the same potential energy U(h)=E=U(ynay)- If that energy is the total energy E then these
points y=h and y=y. are the classical turning points where the mass M stops with zero KE and zero speed
to turn around and fall backward or forward, respectively, into the potential valley in between the turning
points. This is a common feature of most oscillatory motion or vibration.

Force F(x) Ftotal ) -
and : (y)=-Mg+F"%y) UI()I"[()‘) =-Mgx+ U/ml/(y)
Potential U(x) ‘
for soft heavy
non-linear
superball ol
Total Energy
Ymax ) Ystatic
\ O
F areas
cancel Ff()l(ll(h
Ymax Ystatic v
Uzozul(ymux):J' mel(y) dy +.[ mel(y) dy + U(h) _ U(h) —E
static y= h

Fig. 7.5 Force and potential for soft nonlinear (F=ky”) superball dropped from height h

Why super-elastic bounce?

Super-elastic bounce involving two balls was introduced way back in Fig. 4.5 and “explained” by the
2-Bang model sketched there. Is that the only explanation? Certainly not! Is it even right? Well, yes and no.
Here is a chance to discuss how science works or doesn’t work. It is, after all, a human endeavor. (To err is...)

RumpCo VEISUS Chy Ciyp

Let’s imagine a big scientific fight between two research groups something like real ones I’ve seen.
We’ll imagine it’s about superball dynamics. On one side is a small but creative group working for the
Rumpany Company® that first discovers the effect and explains it with the 2-Bang model. But their small
budget limits them to things you can do cheaply with a ruler and compass.

On the other side is the huge ‘Cry Coperane,®. With unlimited military contracts, ‘@ ¢., can afford
any kind of computer or lab equipment. They hear about Rumpco’s discovery and decide to develop and sell
it to the Army as a bomb detonation system.

I hope you’ll excuse a scatological nomenclature and contempt for shortsighted and mindless goals
often associated with post-modern cash-flow-science. My allegorical objective is to encourage curiosity-
driven-science that is now becoming regarded as quaint. | do believe that humans are capable of creating much
more than fertilizer and should be strongly encouraged to do better. If earning gets in the way of learning, then
humans do poorly. I have watched big labs in government, industry, and university die of a pernicious
groupthink fueled by the acquisitive rather than the inquisitive human drives. People lose ability to reflect
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and become happy to merely genuflect. A novel Radiance by Carter Scholz (Picador 2002) is a “Star Wars”
romaine a’clef exposing foibles of scientists at Livermore and Los Alamos.

On one side of our allegory is poor but resourceful little rumpco full of ideas but nowhere to go. Their
2-Bang model of super-elastic bounce is simple, elegant, but appears wrong. The powerful @@, on the
other hand, knows where it’s going and what’s right. It has every resource imaginable. Except wisdom.

CrypCarp’s Tirst move is to discredit Rumpco’s work. They set up a computer that uses lab observed
potential functions to fully analyze a 2-ball bounce. Let’s compare two competing vu-graphs side-by-side.
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3 I
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Fig. 7.6 Rumpco theory versus @y @.s’s simulation. (Rumpco) Finite initial gap (‘@ry @uy) NO gap

One thing is clear. @y @.,s does fancy-schmancy vu-graphs! They resemble wedding invitations.
And, while @ ¢.,,’s 10-figure precision is dubious, we note their ©,~c.c2 and ©),-2 2o disagree with
Rumpco’s predictions (Recall Fig. 4.4.) of final v,=0.5 and v,=2.5 by a little. Furthermore, Rumpco uses an
independent 2-ball bang model. They assume or idealize an initial gap separating mass m; from m, so Bang-1
of my with the floor is independent of Bang-2 between m; and m,. So v, and v, result from 2-body energy-
momentum conservation. Rumpco’s results are not sensitive to force functions.

‘Cnyp Gy Can compute the difficult 3-body collision between m, , m;, and mq (the Earth) all together
just like what’s really happening on the floor. @iy ‘s curvy Vy vs. V, plot in Fig. 7.6 is very sensitive to
each force function F(y) between each pair of colliding bodies. When (and if) ‘@ ¢.,» values check out with
experiment, they’ll happily sneer at the primitive pair of straight lines in the rumpco velocity plot.

Does rRumpco have nearly the right (v,,Vv,) for wrong reasons? Not entirely. The reason a 2-Bang

model works at all is that the force function for these balls is highly non-linear. A quartic function F(y)=y” has
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a flat bottom as noted before Fig. 7.5. That allows the floor-m, collision to nearly finish before the m;-m,
bang really gets going.

Realizing this, the rumpco researchers suggest that @@ try a linear force F(y)=y" simulation to
see if super-elastic bounce disappears. They do, it does, and the rest is history. As seen in Fig. 7.7, m; and m,
bounce up in unison. It’s a pax de deux. Super-elastic bounce goes away!

Quartic |F (y) =y4 (Z)\//(( Rumpany%& ()/L): 7.0
Gnear Teree Tt £ loctty 2 V=099
G//'//z///ﬂ//n//l:l n )
¥ >

y
Quadratic |F(y) =y2

Y o : 1
|—I|||||||||I||||-||||I||||I/||||I|
: Otucity 7|
Linearl] (v) = 7 " N >
Force )=y -
F -1
. :— (Z/}'////////(«//d fﬁ(;////(f(/
Y i E 2 > (ﬂ?‘yﬂ(‘//(«‘

Fig. 7.7 Linear force kills super-elastic bounce. (Collaborative effort.)

The two groups decide to stop feuding and join forces. A corporate merger results in a multi-national
conglomerate %“amﬂymy /. based in the Caymans. They lived happily ever after. (Sort of.)

Seatbelts and buckboards

Another important physics lesson from this section is, “Fasten your seatbelts...tightly!” To avoid great and
damaging force you need to avoid non-linear force functions and fasten yourself with linear ones that can start
working off your kinetic energy and momentum most immediately after a collision. The non-linear force with
its “flat” region applies little or no force at first but then has to make up for its procrastination with deadly
high force after it’s too late. Note how nonlinear force in Fig. 7.5 finishes much higher than the linear force in
Fig. 7.4. Even worse is having no seatbelt at all. That’s like a very non-linear force of, say, F(x)=kx'%. It’s a
flat gap with a practically vertical wall waiting to crush you!

One of the most dangerous vehicles in the Wild West of the early US was the buckboard, a wagon
with no suspension except for a set of springs right under the rider’s seat. When the buckboard hit a bump it
generally lived up to its name. Unfortunate riders ended up like a little m; superball knocked skyward by a
big m, wagon. A safer and more comfortable ride is had in a car with a body as much heavier than the wheels
and suspension as possible. Monster trucks have the worst kind of ratio possible for stability.
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Friction and all that ““dirty”” stuff

Slowly we have put back some of the “real-world” features of the superball collisions that our
idealized “Bang-Bang” models of Ch.4 ignored in order to make the problems more easily solvable. The
effects of gravity during collision have been introduced and applied to interacting zero-gap superballs.

More such effects will be studied in what follows since interacting linear forces are very common in nature
and there are ways to make them easily solvable, too. The oscillating neutron star in Ch. 9 provides a taste of
what is to come in the study of waves and oscillation in Unit 3.

But even the neutron star model neglects what is the bane of the purist physicist, the dreaded
frictional forces. These are among the most neglected and poorly treated physical effects in physics. If
anything goes wrong with a theory, we just blame it on friction! Often we have little choice in this matter.

Friction is a result of having more particles than we’d like to admit. Consider one m;=72 gram
superball. That’s about a mole of Carbon Cq rings and a mole has 6.02E23 (That’s Avogodro’s number.) of
these C¢ molecules. So we’re dealing with not one mass m, particle but an enormous heap with an
unimaginably huge number 60,200,000,000,0000,000,000,000 of particles that individually are (mostly)
friction-free and well behaved, but their mob-behavior is just plain abominable!

You’ve got to get down to at least the individual molecular level before “internal-friction” is pretty
much a non-existent phenomena due to quantum mechanics. So what we call “frictional loss™ is simply poor
accounting of 60.2 gazillion chiseling thieves stealing bits of energy that turn up later as “heat.” In
conservative economics the effect is known as “supply side” or “trickle-down.” Let’s see if we can account
for energy chiseled by just three thieves. (And, then we’ll hire more thieves until we bankrupt the whole
operation!)
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Chapter 8 N-Body Collisions: Two’s company but three’s a crowd

Without knowing force and potential effects on superball collisions, it is often impossible to even
approximately predict the outcome for N=3, 4, or more balls. But, if all N masses have independent one-on-
one collisions with the floor, the ceiling, and each other, prediction can be done “Bang-by-Bang” as in Ch.5.
Difficulty arises when three or more collide at once. Then prediction may need precise and detailed treatment
of their interactive force laws. Elastic binary or one-on-one collisions in one dimension are solved completely
by momentum conservation alone as we’ve done since Ch. 4. But, as we’ll see, anything more complicated
may require more work, and often it requires a lot more work!

The X3: Three-ball towers

One of the goals of Project Ball at USC was to optimize final velocity for superball towers with three
or more balls stacked up like a pyramid as in a multi-stage rocket. One dumb idea was a cheap satellite
launcher. It’s dumb because, even if you could achieve 8 km/s (See discussion in Ch. 9.), you’d burn it up in
the atmosphere. (Well, OK, but on the moon...?)

Actually we were happy just to break the theoretical 2-ball limit of 3.0-times-initial. (Recall
discussion of the INF limit in and after Fig. 4.5.) As seen in Fig. 8.1a that is done quite easily by a 3-stage
tower which achieves a velocity that is V;=3.41 times initial drop-speed (V,(0)=1 for n=1,2,3).

An even better final speed of V5=3.62 is had in independent collisions caused by setting initial gaps
between the falling balls as shown in Fig. 8.1(b) so each collision can be completed before the next one begins.
Then the result becomes independent of the force law governing the detailed trajectory within each collision,
and a geometric construction in Fig. 8.1(b), based on momentum conservation, finds velocity accurately if
collisions are independent. This requires force non-linearity or large initial gaps that are enough to reduce or
eliminate N-body contact effects for N>2.

Conversely, zero initial gaps often reduce the final velocity maximum below independent collision
values. This is particularly true if the force law is linear as shown in Fig. 8.1(c). The 3-ball linear case comes
out very much like the linear case for a 2-ball tower in Fig. 7.7. No single mass gains much speed over its
neighbors. Super-elastic bounce is essentially squelched.

The American Journal of Physics' paper produced by Project Ball contains a discussion of attempts
to optimize super-elastic bounce in towers of 3 or 4 balls. Progress was made but the theory needs work. As
we will see later, this dynamics is somewhat analogous to wave motion in a varying channel. An early AJP
paper'" has an analogy between a trumpet and a chain of sliding balls whose masses increase geometrically.
It’s also analogous to tsunami wave build-up. A rule-of-thumb is that optimum-velocity chains satisfy a
geometric-mean mass relation m,="( m; ms) as is approximately so in Fig. 8.1. Later on, some of this
technology was developed into a toy by Stirling Colgate (astrophysicist and toothpaste heir) and company.
" Class of WGH, Am. J. Phys. 39, 656 (1971).
™ J. B. Hart and R. B. Herrmann Am. J. Phys. 36, 46 (1968).
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Geometric properties of N-stage collisions

The 3-stage collision construction in Fig. 8.1b uses earlier construction of Fig. 4.4. It begins after the
lowest mass m;=100 has rebounded from the floor to the Bang(2),, START point (V;=1,V,=-1) where it
meets mass m,=30 and bangs up to Bang(2),, END point (V,=0.77,V,=2.1) on a slope %/, line.

The second velocity (V,=2.1) of mass m,=30 is then transferred (See gray arrows.) to the first component of
Bang(3),3 START point (V,=2.1,V5=-1). There m, meets mass m;=10 and bangs it up to Bang(3),;s END
point (V,=0.54,V5=3.62) on a slope 3%y, line, giving final top m; velocity V;=3.62.

A 4-stage collision tower sequence with nearly the same mass ratios is constructed in Fig. 8.2(a). Here
each mass m;, m,, and mg, is exactly 3-times the one above it, and the top mass m, gets the biggest boost of
nearly 5.8. Recall Maximum Energy Transfer (MET) case in Fig. 4.5 where a mass ratio of three (m;/m,=3)
leaves the lowest ball stopped (V,=0). In Fig. 8.1b m, is nearly stopped. (V,=0.077).

The same arrangement with a higher mass ratio m,/m,..1=7 is constructed in Fig. 8.2b. Here the top
mass m, gets a boost of over 9.0. That is a kinetic energy boost factor of (V,)?=81 and an altitude bounce of
four or five hundred feet if dropped from arm’s length. (Friction is being seriously neglected!)

Supernovae super-duper-elastic bounce (SSDEB)

Imagine dropping two towers like the ones in Fig. 8.2a-b from either side of a tunnel through the Earth
so the two lowest m;-masses run into each other at the center. If the resulting collisions were elastic, they
could send the other masses to infinity with energy to spare! Later we see escape from Earth’s surface takes
only three times the energy it takes to sit there. (Starlet escapes!) Energy factors for a conservative 3:1-tower
are 2°=4, 3.5°=12.3, and 5.8°=34.8 and more than enough for a free ride to kingdom come. Astrophysical
modeling of Type-1l supernovae reveals just such a high speed SSDEB when a star, like a spherical layer-cake
with lighter elements above heavier ones, collapses. Boom! It appears that most of our bodily stuff has come
along on such a ride! As Carl Sagan remarked, we are of blown-up stars.

Newton’s balls

Novelty stores have simple examples of multistage collisions made by hanging identical ball bearings
in line as sketched in Fig. 8.2c-d. These are also common lecture demos, and they have been called “Newton’s
balls” to elicit giggles from otherwise boring lectures.

Few teachers explain the details of the cool pop-up-single in Fig. 8.2d. In fact, it won’t work unless
all the collisions are independent, and this requires non-linearity of the sphere-on-sphere force function, as we
saw in Fig. 8.1. Cooler still, is an elastic 4-ball column-bounce in Fig. 8.3c. N-balls need N(N+1)/2(=10 if
N=4) independent bangs to get all N balls back with the same speed. Given this, it seems a wonder that solid
objects can bounce elastically. (In fact, they cannot, quite!)



©2008 W. G. Harter Chapter8. N-Body Collisions

my/my, ;=3 my/my, ;=7
®

® fe
) ®

T . ang(‘l)34 b/

I 5 \Bang(3)53

//
/
v
¢ I
) / )2
ang(3),3 -8 i
Q ’ /
3| / v
o y | y
4 Bang(2);, ~d
Bang(2 r
”

V4
s
/

NS L |
z/o/%f%z RV Bl S A
N Ay

ng(1)p;

(a) T o (b) A Bang(4)3

Oe -
® o

—> 4 <4

-+ 4 <4

o
o
0/ &k

/
* . Ba-r{g(])ot ’.

(c) Bouncing """ (d) Single ‘@& /
column pop-up < (1,0)
ml/mk+] =1 /

+. +0 +.+

o / f / f
Flg 8.2 4 ball towers Mass-ratios m,/my.1 (a) 3, (b) 7, (c-d) 1. Independent bangs needed for all.




©2008 W. G. Harter Unit 1 Classical Momentum and Energy 91

Friction, again: Inelastic energy-momentum quadratic equations

Perhaps, you noticed that FINAL velocity values could be found from INITIAL values by two
different ways. Back in Fig. 2.1 we noted an easy way using a momentum conserving straight line and a circle
through V°M from v!N to the answer vF'™™, But, Fig. 3.1 showed another way using an energy-conserving
ellipse to connect v to the answer vF'™N. The first way uses simple linear equations and the second way uses
more complex quadratic equations.

Why are there two ways? Often this means that situations exist where both are needed. Here friction
or inelastic collisions makr total kinetic energy decrease. (Recall our 60.2-gazillion thieves? They’re baa-ck!)
Such a situation is plotted in Fig. 8.3b with the energy decrease indicated by a smaller ellipse inside the initial
ellipse in Fig. 8.3a. This similar to an earlier Fig. 3.2.

The idea is that momentum conservation is still true even if the two masses are exerting sticky,
energy-wasteful, forces on each other. No matter how wasteful those inter-particle forces may be, they still
must obey Newton’s 34 axiom demanding equal-and-opposite forces on each other. So the final answer for
V"N must be at an intersection of the old momentum line with a new and smaller ellipse.

However, intersecting an ellipse and a line uses a quadratic equation. And, in Fig. 8.3, there appear
two solutions to the quadratic equation. One u™™ we want is near the old energy-conserving v-'™. But, the
other one that we now don’t want is a u', which is nearer to the old v'N,

Let’s look at a quadratic equation for u,"™™. There are two given constants KE(u) and MV<°M,

1 2

1
miuy +moly =My M = p, =const. (8.1) Emlul +5m2u22 =KE(u) =k, (8.2)

The COM momentum p, in (8.1) is a constant during the entire collision. Not so for the kinetic energy k, in
(8.2). It’s just a given loss parameter that is quite difficult to predict. We first solve p, for u,.
" _ Py (8.44)

mp

Then we insert the u, result into k, equation (8.2) to get the needed quadratic equation for just u,.

2
1 1 —myu + 2
—m1u12+—m2 T =k, O m il u%—Zpuﬂul + Pu -2k, =0 (8.4b)
2 2 my my noy my

The solution isn’t pretty but its + gives both u; ™ and u,™ shown in Fig. 8.3b.

) 2pu(ml/m2)i\/(Zpu)z—4(”‘1/m2)(”‘1+m2)[(pu2/mz)—ZKU} _oom i\/pu2 _(ml/mz)(ml+m2)[(pu2/mz)—ZKU}

Uy

) 2(my /my)(m, +m, ) (my 7 m, )(m, +m,)

(8.5a) (8.5b)
The unwanted (+) solution u," (given that we started with v;'") means the two balls “wiffle” through each
other. In classical physics, only u,""N makes sense starting with v," and only u," makes sense starting with
v~ ™. In quantum theory, masses can “wiffle.” Then both solutions make sense (sort of).
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Geometric construction of elastic and inelastic energy ellipses

Can you do quadratic solutions (8.5) with a ruler and compass? At first this seems difficult, but the
energy ellipse construction in Fig. 3.5 and geo-mean square root construction in Fig. 1.8 can be used.

As shown in Fig. 3.6, an ellipse has two radii, a major radius a giving Xx-coordinate x=acos6, and a
minor radius b giving y-coordinate y=bsiné. The Cartesian ellipse equation (3.7) is satisfied by these x and y,

and polar angle parameter ¢ is eliminated. (x and y may switch places.)
2

2
XYy M 2 nmy 2
Clz i b =1= 2- KE(VI) * 2-KE (Vz) (3-7)repeated

\elocity values x=V, and y=V, have equal magnitude for initial Bang(0) (V.:=-V"", V,=-v"") or Bang(1) (V"",-v""), and
for a totally inelastic final state (v;=v°, v,=v°). The geometry needed to solve for the initial elliptic radii
@", b™) in Fig. 8.3a or totally inelastic radii (a°", b®") in Fig 8.3c is described in Fig. 8.4. Then an energy
ellipse in (vi, V,)-space such as sketched in Fig. 8.3b may be constructed for any radii (a™"VR, b™R) where the
energy retention ratio R= KE™/ KE™ ranges from R=1 down to R,;,=(a“°"/a)’=(b“°"/b)? as (a™, b™) range
from initial radii (@™, b™) to totally inelastic (@, b®") at the lowest KE allowed by momentum conservation.

The roots (8.5) are two points where energy ellipse and momentum line intersect. For totally inelastic
collision they coalesce and the momentum line is tangent at (v**, v°®) as in Fig. 8.3c. The slope m;/m,=a?/b?
of the momentum line is fixed no matter how much energy is wasted. So is ellipse aspect ratio a/b=(m;/m,).
Square root construction (from Fig. 1.8) finds a/b from a?/b? in Fig. 8.4a-c.

The construction begins by boxing the momentum line in the 1% quadrant and doubling it using a semi-
circular arc around its upper left hand corner. An extended box including the arc is drawn in Fig. 8.4b. The
center of the extended box is the center of a second arc that finds the square root \(m,/m,) of the momentum
line slope in Fig. 8.4c that is the desired ellipse aspect ratio a/b of all possible energy ellipses for the masses
m; and m,. The basis of this construction is the mean geometry of Fig. 1.8.

Location of radii a°®™ and b°°™ in Fig. 8.4d uses vertical and horizontal projections of pt-(v°", v*°*) to
the (\(mi/my)=a/b)-line. This is helped by the fact that pt-(v°*, v***) lies on the ellipse and on the 45° line so
that its x-coordinate (x=acos6) and y-coordinate (y=bsin6) are equal. Thus angle parameter is tan™‘a/b= o, the
a/b line slope. So x and y projections of (v***, vy onto the 6-line yield hypotenuse lengths a*** and b“°™ in
Fig. 8.4d. Concentric circles of radii a“°™ and b“°™ let us construct the ellipse as in Fig. 3.5.

Initial pt-(v"", V') gives initial elliptic radii a" and b™ in Fig. 8.4e. Square-radii ratio (a“"/ a™y=“"/b™y
or ratio (a“®b*™)/(a™ b"™) of the two ellipse areas lets us find the lowest possible kinetic energy retention ratio
Rmin- You should prove (geometrically and algebraically) that minimum ratio is given as follows.

—_ ycom _my—m, (3.63) m, yIN _ycom B 1— ,Rmin (3.6b)
min T Ny ) T ,IN coM [ '
% m; +m, m. vV +V 1+ Rmin
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Ka-Runch-Ka-Runch-Ka-Runch-ka-Runch-...: Inelastic pile-ups

N-body collisions described so far have been mostly elastic. That’s not true for California freeway pile-ups.
California pile-up chains start when a cell-phony driver enters a fog at 60 mph and rear-ends a vehicle or
vehicles that have slowed down or stopped. Cars drive bumper-to-bumper so dozens may be involved.

Pile-up mass grows with each car added to it by a series of inelastic “Ka-runch” collisions like Fig. 2.1
of Ch. 2. Cars may be added to a pile-up’s rear or to its front or even to both ends. Fig. 8.5 shows a single 60
mph car piling up a line of five stationary cars and, vice versa, Fig. 8.6 shows a line of five 60 mph cars piling
up on a single stationary car. Each pile-up collision loses as much energy as it can while keeping momentum
constant. It makes the smallest ellipse that touches the momentum line in Fig. 3.2c and Fig. 8.3c.

In each case the sequence of velocity-velocity slopes is an arithmetic progression 1:1, 2:1, 3:1, 4:1,...
similar to velocity sequences in Fig. 6.4 and Fig. 6.5. Both have lines that intersect on a single point and
inverse or complimentary slope sequence 1/1, 1/2, 1/3, 1/4,..., known as a harmonic progression.

The incoming car in Fig. 8.5 has momentum P™=mv=60 and energy KE™=1 mv’=1800 with v=v"'=60.
The final pile-up mass M=6 has the same momentum P™=MVv=60 but reduced velocity V=v""=10 and energy
KE™™=1MVv*=300 down by 1500 units. (These are (very) Old English units. We take unit mass (m=1) cars.)

The incoming cars in Fig. 8.6 together have momentum P™=5mv=300 and energy KE™=51mv’=9000.
The final pile-up mass M=6 has the same momentum P =Mv=300 with increased velocity V=v""=50 but
reduced energy KE™=1 MVv*=7500. The same energy deficit of 1500 units is seen in Fig. 8.5 and Fig. 8.6.

Of these two equal-energy-loss nightmares the latter is worse since it began with five times the kinetic
energy and still has 7500 units to dissipate. Worse nightmares combine the two as shown in Fig. 8.7. This a

particularly troubling set of nightmares since there are many possible outcomes that have different orders of
combination with differing results.
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Ka-pow-Ka-pow-Ka-pow-Ka-pow-.... ROCket science

An N-body model of rocket propulsion can be made by “time-reversing” pile-ups. Let us imagine a line of
N=11 equal (m=1)-masses separated by explosive charges that go “pow!”” in just the right sequence to blow
one fuel-pellet at a time backwards off the rear end of a rocket and propel the remaining rocket mass forward.

Fig. 8.8 is a velocity-velocity plot of seven such “pow!”-blasts after which a rocket with just three
masses numbered 8, 9, and 10 speeds off the page to the right. Presumably, the payload of this rocket is in
the ball labeled 10 at the head of the line. For N=11 balls, there are ten pow(b)-blasts numbered by b=0 to 9.

The velocity unit in Fig. 8.8 is the relative exhaust velocity Av,=-1 of each pow(b)-blast. The 0"-blast
at the bottom of Fig. 8.8a starts with eleven stationary balls and blows ball-0 away from the line of ten balls
1-2-3...8-9-10. To conserve momentum (initially zero) the 10-ball rocket of mass (M=10m=10) has final
velocity AV =+1/10 to cancel momentum AP,=m-Av,=-1 of fuel-pellet ball-0 in a zero-sum pow(0)-blast.

m-Avy+10m-AV)(0)=0 (8.7a)

The 0™-blast line begins at the origin (V\y=0,v,=0) of the V-v.-plot in Fig. 8.8b and extends one unit
down and 1/10™ unit right to point (V,(0)=1/10,v,=-1). Pow(0)-line slope is mass ratio (-m/M=-1/10). It is a
COM line of a time reversed totally inelastic collision, a super-elastic collision.

The 0™1%,2"% 3", ..., or 9" blast blows off fuel pellet-ball b=0, 1, 2, 3..., or 9, respectively. Each blast
gives a larger rocket velocity boost AV\,(1)=1/9, AVy(2)=1/8, AV\(3)=1/7...AV\(b)=1/(10-b) since rocket mass
is less by m=1 after each blast but the exhaust momentum impulse m-Av,=-1 is the same each time.

m-Av;+9m-AVy,(1)=0 m-Av,+8m-AV(2)=0 ... m-Avy+(10-b)m-AV(b)=0(8.7b)

The harmonic progression 1/10,1/9,1/8...1/5,1/4,1/3,1/2,1 in Fig. 8.8a contains momentum impulse
terms AVy,(b) in a 10-term harmonic series 1/10+1/9+1/8...1/5+1/4+1/3+1/2+1. Rocket velocity after its b™
pow(b)-blast is a partial sum of the first b+1 harmonic terms. The (Vy, ,v.)-plots in Fig. 8.8b show this.

0" V(0)=1/10=0.1 1% V(1)=1/10+1/9=0.211  2"% V(2)=1/10+1/9+1/8=0.336

3" V(3)=V(2)+1/7=0.478 4™ V(4)=V(3)+1/6=0.646 5" V(5)=V(4)+1/5=0.846

6™ V(6)=V(5)+1/4=1.096 7™ V(7)= V(6)+1/3=1.429 8™ V(8)=V(7)+1/2=1.929
On its 9" and final pow(9) the rocket is boosted by a whole unit exhaust velocity to V(9)=V(8)+1=2.929.

A 10-blast rocket exceeds exhaust velocity (Jve|=1) on its 6" pow(6)-blast with V(6)=1.096. This is
plotted on the extreme lower right hand side of Fig. 8.8b. The COM frame sees exhaust mass 6 thru 9 moving
forward but the rocket sees each exhaust mass leave it moving backward at exactly v.=-1 until it gets another
blast-boost. Finally exhaust masses numbered 0-9 separate from each other and from payload mass-10. Total
COM momentum is always zero, and so all eleven balls always “balance” on the COM origin.

N-blast velocity is a logarithm function if N is large. Momentum is still conserved for each blast.

M-AV=-v,AM becomes: M-dV=-vodM or:  dV=-v ¥ (8.8a)
We integrate this from initial rocket mass M, to final payload Mg, and from rocket V,, to final Vg,.

v My dm : —y | m™
Jav==v,[, ™ becomes: V=V, =—ve[lnMFIN—lnMIN]—ve[lnMZN} (8.8b)

This is the famous rocket equation. It gives discouraging predictions for interstellar travel. (See exercises.)
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Fig. 8.8 Rocket science by harmonic series geometry.
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Exercises
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Chapter 9 Geometry and physics of common potential fields
Physical and geometric aspects of elementary force and potential fields are introduced in this section. The

two most important are the oscillator and Coulomb fields that will later occupy Units 2 and 3.
Geometric multiplication and power sequences

The most common power-law potentials are U(x) = Ax® (Oscillator potential) in Fig. 9.1, U(x) = Ax
(Uniform field potential) , and U(x) = Ax* (Coulomb potential) shown later. Power-law potentials and their
force laws have simple geometric constructions. Exponential or logarithmic fields (shown later) do not.

Multiplicative power operations are done using a staircase of similar triangles as shown in Fig. 9.2. A
geometric progression {1=s, s=s', s%, s°>,...} and an inverse progression {1=s°, 1/s=s*, s s°,...} lie on either
side of the unit stair step 1=s". A slope or scale factor s=2 or s=1/2 is used in Fig. 9.2a or Fig. 9.2b. They
resemble perspective drawings of school hallways. (Elementary School is (a) and High School is (b).) Each
stair zigzags between slope-1 line-(y=x) and slope-s line-(y=s-x) or between line-(y—-x) and line-(y=x/s). The
line-(y=s-x) and line-( y=x/s) are perpendicular or normal to each other. So are line-(y=x) and line-(y=-x).

A two-step triangle in Fig. 9.1a gives each point on the oscillator potential, a parabola y=x2. To find
where the parabola hits vertical line-(x=2.2), for example, we go up that line to the 45° line-(y=x) and then go
across to vertical line-(x=1). A dashed blue line is drawn from origin thru that point to an arrow intersecting
line-(x=2.2) at pt-(x=2.2, y=2.2%) on parabola-(y=x?). A similar zigzag gives pt-(x=-2, y=4) or any point on the
parabola (y=U(x)=x%) below.

(a ) 0sczllat0r - potential U(x)—x Force F(x)=-2x
74)7“ -L . L \#fr2s) |
i J \-19) \F(-))=;:
\ F)_ RSN
o U\ reaner
F(2.0) U(x} <\
- F(0)=a
o IR ’
F(15) /AI/ZI A 2 - — Fo.5)=-7 <
I 2 F) ; \\
- / // // U \
K_ N / /] 4"""'#‘ T\F”””
s | : TN
2 - x=0 1 2 2 -

Fig. 9.1 Geometric construction of U(x)=x? potential and Hooke’s force law F(x):-2x.
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The physicist Force =-Slope rule (6.9) is drawn using force triangles in Fig. 9.1a. Force is linear in x,

that is, F=-2x, and that is minus the slope of x. A line of slope —2 in Fig. 9.1b plots F(x). Force vector F

scaled by 1/2 gives a force vector shown in Fig. 9.1a equal and opposite to coordinate x. Each force triangle

has base F/2, an altitude that is a constant 1/2, and a hypotenuse normal to the parabola tangent. It is similar

to the tangent triangle with base AU and altitude Ax (center of Fig.9.1) that shows force=-slope ( F(x)=—4%;

§3

(a) Slope factor s=2

y=2x

1/s

1/s?
/53
0 -1/

-1/s

-1/s

=S

y=-\5€/

N\
N\
N\

AU

15((B) 5=172
yEX | 21
I — =24
) al ‘
2 / \
0 §33 S 1 1/s 1/5?
B AN . 9(P ‘J
-5
_] N R 900
-]/S Ve :
Yy=X
-1/s? N
y=—2Xx
-1/53

Fig. 9.2 Geometric sequences and “staircases” for slope or scale factor (a) s=2, and (b) s=1/2 .
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Parabolic geometry
A parabola U(x)=Ax? has a focal point at y=U=A/4 where vertical rays meet if reflected by parabola

tangents as in Fig. 9.3b. A parabolic radius is its half-width A at the focus. For y=x? we have 2=1/2. (Note
how F(£0.5) vectors point at the focus in Fig. 9.1a.) An old name for A is latus rectum. A circle through the
focus about any parabolic point will be tangent to a line called the directrix located at a distance A from the
focus. Focus and directrix define a parabola that passes midway between them thru the tip-point M of the

parabola where its focal radius and equal distance-to-directrix both reach their minimum value /2.

( a ) Parabolic Reflector y:x2

/

(b )Parabolic geometry

Vertical
incoming
ray
reflects

|

/ / ' Latus

Distance = Distance o1y

V=3 / I rectum
) / ﬁ 0!
//O directrix

Directrix is a so named because it “directs” both the rays and wave phase of an optical reflector. Since
the focal radius (length of each sloping ray line in Fig. 9.3a) equals the perpendicular directrix distance (length
of corresponding dashed vertical line), waves are guaranteed to be plane waves. Also, the equality of angle of
incidence and reflection off the parabola bisecting the dashed and solid lines, guarantees vertical parallel rays
for all which leave the focus and bounce off the inside of the parabola. It also guarantees that parallel vertical
rays bouncing off the outside will go away from the focus. Either side of a parabolic surface converts plane

waves to spherical ones or vice-versa.

To better understand the parabola’s geometric optics we draw examples of the tangent-kite for four
different tangent slope values. The blue kite of slope=2 in Fig. 9.4a and yellow kite of in Fig. 9.4b
have equal focal radius and perpendicular distance-to-directrix forming the major iscosoles triangle of the kite.
A minor iscosoles triangle (upside down in Fig. 9.4) shares a base with the major one. Their perpendicular

bisector is the tangent line. The bisection point is slope g=§=;p in units of A as indicated by vertical arrows.
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Fig. 9.4 Parabola and geometry of curvature and slope of tangent-kites.
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A singular case is the red kite of slope=1 that is square. Lesser slope=1/2 gives a rhomboidal green Kite

with one side on the vertical parabolic axis instead of on the horizontal directrix. Points of slope=+1 on the
(4py=x*=2Jy)-parabola lie on either side of its focus at distance A=2p from it. 1=2p is also the (minimum)

radius of curvature of the parabola at its tip (minimum y at x=0) that lies a distance A/2=p below the focus.
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Coulomb and oscillator force fields

Our atoms and molecules depend on the electrostatic Coulomb field to have stable chemistry and biology.
Like charges repel and opposites attract with a force that varies inversely with the square of distance r
between them. A simple version of the electric Coulomb force law (axiom) is:

I q0

F(r)=—=—= where:
) 47580 r’

Newtons - meter - square

=9,000,000,000

4re, per square Coulomb

(9.1)

The units and notation are standard but the size of this is mind boggling. It’s nine billion Newtons for just
two charge-units a meter apart. (To be precise it’s 8.99-10° Nm?*/C*.) OK, a 1N is only about % Ib, but are you

able to hold up a billion sticks of butter? Also, you have thousands of Coulomb charge units in each fingertip
with only a centimeter separation so add another factor of (100)-squared. Make that ninety trillion Newtons
for each Coulomb or about a million trillion Newtons trying their darndest to blow your pinkie to bits!

But, still we’re underestimating this monster force. Most of the electronic charge in the world is
crammed into atoms and molecules with at most a nanometer (10°° meter) across and some are an Angstrom
(10" meter) or a tenth of a nano. So put on another factor of (10°°)-squared or million-billion trying to undo
your pinkie, that’s a trillion-trillion-billion. Does your manicurist know about this?

Sometimes these forces get loose as in a TNT blast, but usually, tiny nuclei with an equal positive
charge hold down potentially rebellious electrons. Still, what’s holding nuclei together? Nuclear radii are
femto-meters (10™*° meter) or Fermi. (Note: both fm and Fm are abbreviations for 10*°*m=10"3cm.)

Oops! That’s another factor of (10"*°)? or another million-trillion-trillion to increase our stress level.
Nuclear charge is 10° times more pent-up than its atomic electronic counterpart with a grand total of about a
trillion-trillion-trillion-trillion Newtons hankering to blow up your fingertip nuclei. Cancel the manicure!

When nuclei do blow up, the result is more than 10° times more devastating than any TNT bang. We
don’t use force to estimate the devastation of a nuclear fission bomb or the yield of nuclear power plant fuel.

Rather we use electric potential energy, that varies as 1/r not 1/r2. (Slope of a U(r)=1/r-curve is F(r)=1/r%)

q Joule
U(r)= ——=— where: =9,000,000,000 9.2a
() dney r where 4me per square Coulomb (9.22)

Energy or (Force)-times-(distance)-unit is Joule or Newton' meter (N-m). Like superball potential field U(r) in
(6.9), force F(r) (9.1) is a (-)derivative of potential U(r) that in turn is (-)integral of force F(r). (Recall (7.5.)

F(r)y=- au(r) =— 90 ir’1 = —qQ r (9.2b)
dr 4me, dr 4me,

UR=- | “F(rydr=32- \ i= Qg (9.2¢)
o 4me, 4re,

Potential nuclear energy yield is about a million times greater than for the same number of chemical energy
sources since femto-meter nuclei are a million times smaller (Ryuc~107°) than nano-meter molecules
(RmoL~10"). Nuclear forces would then be a trillion times greater than typical atomic and molecular forces.
Fig. 9.5 plots attractive Coulomb force F(r)=-1/r* and potential U(r)=-1/r of negative charge -q to a
positve +Q nucleus. (Negative force points toward the +Q origin (x=0).) It uses zigzag geometry of Fig. 9.4.



©2008 W. G. Harter Chapter9. Geometry of potential fields 106
(0,0)  x=0.5 x=1 x=2.0 (0.0) 0.5 x=I 2.0
\\Q\ U . pus <$
W \j\:\\—a.—:—-*—%g F)=-152, <L 000 °
\\\ Sl \\\\\ o ® ® e D &
-0.5 [ B e g @
L RN olp @
SR . L |g® Up=-1k
-1 O ~e -] O
*\ S F() §<
\ . NG &
\ \ ﬁ((@ 7){690
\ o
o\ ) &
\ \ T~
2 |t <« U)
‘ F0.5) y
Stepl :|Follow lﬁefrom brigin (0,0)
through (x,-1) intevcept t§ (+1,-1/x) intercept. ®
Transfer lateraljy t\i draw (x,-1/x)® point. =17A§2 U
\ <
-3 : -3
\ ®
\\ =L/ Step3 :(Optional) Display Force vector
\ using similar triangle constuction based
\ on the slope of potential curve.
-4 %Zé@%‘* 4 AN
Step2 : Follow line from origin (0,0)
through (x,-1/x) point@® to (+ ],—]/x2) intercept.
Transfer laterally to draw (x,-]/xZ)O point.
@

Fig. 9.5 Attractive Coulomb force F(x) and potential U(x) curves. (F(x) vectors drawn at 1/4-scale.)

Could the Coulomb F(r)~1/r? force field be derived like the superball force F(Y)~1/Y* in (6.10) by
counting momentum bangs? Indeed, if a charge ejected a cloud of little “bang-balls” then the number of bangs
scored at distance r would vary inversely with area 47r* of a radius r sphere. But, that idea doesn’t explain
very well attraction of a charge +Q to a —q or of a mass M to a mass m in Newton’s gravity law.

Fgrav(r)

-GMm / r? , where: G=0.000000000067 N m/kg?

(9.3)

Gravity is universally attractive (no “negative” matter readily available) but much weaker than the electric
one since G constant 6.672E-11 (3-107""in mks units) is smaller (by 10°° times!) than the 9-10* in (9.2).

As of this writing it is still a mystery why these are so different. We really do not yet understand
either of these forces at a fundamental level. They are still very much in the axiom box.
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Tunneling to Australia: Earth gravity inside and out

Imagine x=1 in Fig. 9.5 is the Earth radius R;=6.4E6m. The F(r) plot shows gravity falling off for
r>Ror x>1. But it’s wrong for subterranean radii (r<R,) unless Earth is compressed. F(r)=-1/r? doesn’t
apply everywhere unless Earth is squashed to a 10 millimeter radius “black hole.” (More on this later.)

If you were to be at sub-R, levels all Earth mass at radii above your radius r can be completely
ignored in figuring your weight! As you might expect, you’re weightless at the center (r=0) since the pull of
all Earth’s mass exactly cancels there. But, so also does your attraction to a spherical mass shell cancel
anywhere inside it. One could float weightlessly anywhere therein regardless of the shell’s size or weight.

Such a cancellation is a geometric peculiarity of an inverse square law. (It also underlies a Gauss law
explanation of why you’re safe inside a car struck by lightning.) Any direction you look inside a uniform
mass shell has a mass element m whose force is cancelled by another element M behind. (See Fig. 9.6.)

The shell tangent to the m-point you’re facing intersects the tangent to the M-point behind you to
make an isosceles triangle whose sides make an angle © with your line of sight along the base. This means a
narrow cone of sight will include shell mass m=Ad? at a distance d in front of you and shell mass M=AD? at a
distance D directly behind you, where the angular factor A~1/sin©® is the same for both. That assures perfect
cancellation of gravity m/d? in front with -M/D? behind you. This applies for all directions in Fig. 9.6.

Shell mass element
m =(solid-angle factor A) d?

Gravity at I = \u a/r
due to shell mass elements nd
GM- Gm — 1 t\(ess.
D2 & B | !
(2 En=0 | /
D d AN y
Shell mass element ~ -\
M =(soid-angle factor A )D2

Fig. 9.6 Equal-opposite attraction. Geometry for you floating weightless inside a spherical shell.

A mass m at radius r inside Earth feels gravity attraction GmM./r? where M. is Earth mass inside the radius r
indicated by the dashed circle in Fig. 9.6. If Earth is uniform density p, then that inside-mass is M.=4 prr’/3.
Force law r2 cancels all but one r of the r® in mass M.. We then get a linear force law.
Finsige(r)=GMmM./r*=m(G4np /3) r=mg(r/R)=mgx (9.4a)
(Earth surface gravity: g= G Ry4np /3=9.8ms™) (9.4b)
The linear force law (9.4) is like that of a harmonic oscillator in Fig. 9.1b and so the inside-Earth potential
must be a parabola like Fig. 9.1a. Force F(1)=-1 is continuous as we cross Xx=1 and so must be the slope of

potential U(x) as U changes from —1/x? to parabola. Terrestrial beings such as ourselves live in a nearly-
constant-field (% ~ 0 )-region near x=1. In Fig. 9.7 we find the potential parabola geometrically by its focal
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point and directrix using the tangent at x=1. Recall a tangent at x=1=2p in Fig. 9.4a has slope=1 or 45°. So
does the parabola at x=1 in Fig. 9.7 below have a slope of (+1) and a force of (-1) (That’s —-mg in mks units.)

o o F)=-x Fg)=-1/2
Py (inside Earth) (outside Earth)
o g 5 Ue)= (x>-3)/2 Ub)=-1s |
\
O ¢ / \ \ ‘\
¢ ¢ Doas 0 05200 05 Rl |
/ll / L7 T \
l/ // //' Q\Q \\
® P E@%/ al )
a
® g |FcLy o Lo%
S Ly)| F(.9 ® | gorl.
 |reo8) | F.3) [
B ﬂ:ﬂ;ﬁ%JF(jﬁr{y %
1\: B - a | . =\=7
A Example pf contacting line
L) and contact point
Focus Latus

o
@ rectum &S '
______________ . stdiice
A

Fig. 9.7 Construction of Earth gravitational fields inside and outside.( units of X: Rg,; F: mg; U: mgR,)

A parabola tangent bisects the angle between the line to the focus and the directrix drop-line as in Fig.
9.4. Twice 45° gives 90°. The focus is A=1.0 units straight across and the directrix is A=1.0 units below as
shown in Fig. 9.7 (lower-left). Using this we may construct the parabola by rotating a square corner of a
piece of graph paper around the focus so the corner touches a line halfway to the directrix. (We can call this
half-way line the sub-directrix. It is the line of tangent intersections indicated by arrows in Fig. 9.4.)

The parabola so constructed is y=x?/, =*/,. That is the interior potential U™N(x) (-1<x<1). It meets the
curve y=-1/x that is the exterior potential UF*(x) (1<x<o) at x=1 where they are equal (U™(1)=-1=U%(1)) as

is slope, which is the force (F™(1)=-1=F¥(1)). (However, the slope of the force curve takes a big jump!)

Adding a constant to a potential won’t alter slope or force. We added 3 to gz to make it equal -} at x=1.
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To catch a falling neutron starlet

The “glue” that holds in the rebellious nuclear proton charge is called nuclear matter, a mix of
neutrons, mesons, and their ingredients. Let’s imagine a fingertip (1cc) of neutrons as densely packed as they
are in a nucleus or neutron star and estimate how such a neutron starlet might travel through Earth. First, we
find the density of nuclear matter. Let’s say a nucleus of atomic weight 50 has a radius of 3 fm, so it has 50
nucleons each with a mass 2:10°%kg. (It’s actually more like 1.67-10"’, but roughly 2:10%".)

That is 100-102"=10"2° kg packed into a volume of **/5r3= **/; (3.10"**)® m® or about 10** m*. That
gives a whopping density of 102°*3 = 10'®g per m* or a trillion kilograms in the size of a fingertip.

That’s a pretty heavy fingertip! Its weight mg is ten trillion Newtons. (Well, actually 9.8 trillion
Newtons. No need to exaggerate here!) In spite of this, its gravitational attraction to nearby rocks on the
Earth is comparatively moderate. A (10cm)® 1kg rock would cling to the starlet with a force of about

Frosk=Gm(1kg)/r?= 100Gm = 100(6.7E-11)1E12 = 6,700 N, (M=Mtarier=10'%kQ)
or less than a ton and small change for a starlet weighing billions of tons and cutting into the Earth like a bullet
going through cotton candy. Let’s see what speed it might gain falling from the surface.

Starlet energy is assumed constant since friction would be tiny compared to its enormous weight.

E=KE+PE=1,mVv?+ U(®X) =4, m v? + ¥, mg (x* -3)=const. (9.5)
Let it be released at Earth surface (x=1) with zero velocity. This sets the energy constant.

E =Y, m0? + ¥/, mg (12 -3)=const.=- mg (9.6)
At Earth center (x=0) we solve for the velocity there. (The starlet mass m cancels out.)

E =Y, mv® + Y/, mg (02 -3)=const.=-mg or:v’=g, (9.7a)

v=1g (In mks units: v>=gR, , Or: Vo= V(g Rs)=8 km/s) (9.7b)

Vo = 8 km/s is also Earth’s minimum orbital insertion speed. A mass dropped down the tunnel flies with the
same x-coordinate as one shot with the speed v, into circular orbit. One flies above the other and they meet
each other on the other side 42 minutes later as shown in Fig. 9.8. We now show this synchrony of orbital

timing holds for all pairs of starlets sent from anywhere inside the Earth!

Fig. 9.8 Neutron starlet penetrates Earth as satellite orbits to meet 1/2-way around in 42 minutes.
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This synchrony involves a physicist’s most favored type of potential energy U=*/,kx?. When PE=U
is a square like kinetic energy KE=',mv? we have a wonderful symmetry between position x and velocity v.
E=KE +PE= const. = Y/,mv? + Y/,kx?
We make any constant-sum-of-squares into a Pythagorian relation 1=sin?6+cos?6 just as we did to analyze

the sum (5.10) of super-ball KE. Here (9.5) is a sum E=KE+PE and the constant k is starlet weight mg.

1=(m V?/2E) + (k X*/2E) =sin®6+cos’ 0 (9.8a)
Position x and velocity v are then expressed in terms sine and cosine of a phase angle 6.
x= V(2E/K) sine (9.8b) v=V(2E/m) cose .  (9.8c)

Velocity v is proportional to cos¢ and 6 has a constant angular velocity »=5° so that 6=wt+o. (0=6,=const.)

v=d—x=d—xﬁ=d—xa)=w\/@cos9=\/gcos9 (9.9a) where: w:ﬁ= L3 (9.9b)

dt dO dt do k m dt m
Angle oais a polar angle in (x,v/w)-phasor-space of Fig. 9.10a. (x,v/w)-orbits are circular-clockwise (o= ) if
positive phasor v-axis is up and positive-x axis is to the right. Earth xy-orbits may be elliptical with a polar
angle ¢ that can orbit either way in Fig. 9.10. Each spatial dimension x and y has a constant sub-total energy.
KErom=€,+€, where: ec=const.= /,mv,® + */,kx? and:  e,=const.= ",mv,? + ' ky*  (9.10)

Equal constants (ex=e,) give the circular orbit in Fig. 9.8. Frequency w (9.9) is independent of energy value e,
or e, and so orbit and x-tunnel motion each have frequency w=vg, but tunnel motion, with same e, but zero
ey, has half the energy. All motions of the starlet inside the Earth have the same 84-minute period. That is a
fundamental harmonic period of a uniform Earth and approximates behavior of the real Earth.

To depict the force vector F on the starlet simply draw an arrow from it to origin as in Fig. 9.9a since
F is proportional to coordinate vector -r. (In Fig. 9.7, F is equal to —r.) It’s projection on x or y-axes are the
forces components driving the 84-minute oscillations along x or y-axes. Perhaps, there is a starlet deep below

us swishing out 84-minute elliptical orbits as in Fig. 9.9b.

(b)

Fig. 9.9 Force and orbits inside Earth. (a) F is minus the coordinate vector (b) Typical orbits.
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Starlet escapes! (In 3 equal steps)

Imagine starlet-m has decayed to where it sits at the bottom of the U(x)=/,mg(x?>-3) curve in Fig. 9.7. How
much energy does it take for it to escape from Earth center and go back whence it came? The plot of U(x) in
Fig. 9.7 and discussions above suggest three equal steps of 1/2 that bring energy -3/2 at x=0 up zero at x=o

Step-1 is to drag or shoot the starlet-m to the Earth’s surface. That takes energy aE;=%/,. (That’s
Y/,mgRr, in mks units.) Shooting radially at velocity v, = V(gRs) given by (9.7b) would do this first step. It
would then come to rest (momentarily) at the Earth surface at r=R,.

Step-2 is to launch starlet-m into a minimal circular orbit from the Earth’s surface. That takes dollop
of energy aE,='/, equal to the first. (Again, that’s */,mgRr, in mks units.) Shooting tangentially with minimum
orbital insertion velocity vy = V(gR,) given by (9.7b) does this second step.

Step-3 involves a final energy jump aE;="/, equal to each of the first two by increasing from the

orbital insertion velocity vo = V (gRs) to the escape velocity Ve from Earth’s surface r=R,.

Ve = VoV2= (20R,) =11.3 km/s=7 mile/s (9.11a)
In terms of fundamental potential Ug,,(Rs)= -GMm /R, at a planets surface r=r,, the escape velocity is
Ve = vg\2=V (2GMIR,) . (9.11b)

Orbital threshold velocity vg of radius R, is Y¥2=0.707 or about 71% of the escape velocity V from there.

No escape: A black-hole Earth!
By uniformly compressing Earth, we imagine extending the region of the Coulomb potential —1/r in Fig. 9.5 to

lower values of r while making the harmonic potential U(r)=Y/,kr? inside the body occupy a smaller and
smaller radius R, and take on narrower, deeper, and more negative energy values.

The plot in Fig. 9.5 maintains its shape but we rescale to accommodate a squashed Earth. The escape
velocity in (9.11b) grows as we consider a decreasing squashed-planet radius R,. Finally there comes a

particular radius R, Where the escape velocity (9.11b) is the speed c of light.

¢ =V (2GM/R,) (9.12a)
That radius is called the Schwarschild radius or “black hole” radius since light cannot escape.
R, = 2GM/c? (9.12b)

For the earth of mass M, = 6:10% kg the radius R, is about nine mm, or the size of a fingertip. It is
hard to imagine our world so squashed! Things may be collapsing all around, but not that much.
Oscillator phasor plots and elliptic orbits

The oscillator functions in (9.8) suggest a coordinate-velocity plot or phase-space plot. By (9.9) the
phase angle 6=wt+a is a product of angular frequency » and time. To get a circle starting on the x-axis, we set

initial phase to a=6,=n/2 and plot (x= X coswt, v/w= -X sinwt) for the “clock™ or phasor plot in Fig. 9.10a.
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So that positive v versus x defines its 1% quadrant, a phasor rotates clockwise like a clock hand so angle
6=—]wjt has a minus sign. (This is quite apropos since our clocks now are waves and harmonic oscillators.)

Each dimension x and y has its phasor plot as indicated by Fig. 9.10b. In other words there are four
phase-space or phasor dimensions (x , V\/w, Y , Vy/w) being plotted. Here the frequency w for each dimension
x and y is identical due to symmetry or isotropy of the Earth model. But, initial phases o, and o, of x and y are
independent. In Fig. 9.10b we set x-oscillator phase to 2 o’clock (on a 16-hour clock) and y-oscillator 2 hours
ahead to 4 o’clock so the ellipse orbit is clockwise and have a left-handed symmetry. Setting x to be 2 hours
ahead of y makes the same orbit but it will go counter-clockwise and have a right-handed symmetry.

The x versus y plot with x always two hours or 45° behind y, is an inclined elliptical xy-orbit path in
Fig. 9.10b. It might represent a typical neutron starlet path in the Earth. Or else, it might represent an optical

polarization ellipse described in Unit 2. Below is a discussion of some special cases of orbit ellipses.

(a) 1-D Oscillator Phasor Plot ) oﬁlloczty Vy/©

p—

handed

-2
velocity|v,/o < \2\
3 / 3
» ~ |
/ \ position ~_ >(
ot | x ..
-4 4 x-position
\y / Phasor goes | 7&
clockwise 5 o ™ 5 clockwise
by angle ot \/ ~ \/ orbit
o -4 6 if x is behind y
(b) 2-D Oscillator Phasor Plot (’Z 1;1 h_afie 45 \, /7/
ehin -
I 8 :
y-position y-Phase) (1p) 2l Left
o= —- — ‘—. 0[3.5) handed
SN DY
— = O — O(5,7)
y-velocity/ o 4 0 counter-clockwise
v/a) o v 4 ©(6,8) ify is behind x
= @

.(8’_6)
N
. \/ \/ ._r.(g’_s)

on 1
! <t

Fig. 9.10 Oscillator plotsl. (a) 1D-HO phasor plot. (b) Isotropic 2D-oscillator phasors and xy-path.
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First we verify by algebra that orbits in Fig. 9.11 are ellipses. Fig. 9.11a has x running 90° behind y
with a relative phase lag Aa=0—0oy=n/2 that is 4 hours or 1/4-period behind in phase on a 16-hour clock. We
say such a 90°-lagging-x-motion is in-quadrature to y-motion. It gives an un-tilted ellipse with a left-handed
orbit, and if e,=a=b=e, then it gives a circular orbit or left-circular polarization. (See Fig. 9.11a on right.) For
right-handed orbits x-motion and x-motion switch leads to Ao=cs—oy=—7/2.

Quadrature xy -motion is a cosine and sine projection on a-side and b-side of an ellipse, respectively,
based on expressions (9.8).

X=acoswt, (9.13a) y =b cos(n/2-wt) =bsinwt. (9.13b)

Squaring and adding cosine and sine expressions gives a standard xy-ellipse equation.
2ra® +y7 6% =1 (9.13c)
Zero phase lag Aa=0 or in-phase motion gives linear polarization in Fig. 9.11b. In the case of Fig.

9.11b where x and y-motions are in-phase we have

X =acos ot (9.14a) y=Dbcos ot. (9.14b)
Combining these two gives a trajectory that follows a straight line of slope (b/a) seen in the figure.
y = (b/a) x (9.14¢)
Lag Aa=+r or pi-out-of-phase is a linear polarized motion, too.
X =acos ot, (9.15a) y =-bcos wt. (9.15b)

It is simply a horizontal mirror reflection of the in-phase path.
y =-(b/a) x (9.15¢)

In each of the figures we could imagine three starlets going in unison. The first starlet obeys the y-
equation (9.13b) with x=0. The second starlet obeys the x-equation (9.13a) with y=0 like the tunneling starlet
in Fig. 9.8. A third starlet obeys both the x and y equations like the starlet orbiting above the tunneling one(s).

A linear force field F=-kr is the only field whose Cartesian components oscillate sinusoidally at the
same frequency.

F=-kr implies : F,=-kx, F,=-ky, F,=-kz (9.15)
Neither the coulomb field F=-kr/r® nor any other power-law field F=-krr® is so convenient!

As shown in later units, negative energy orbits in Coulomb fields are elliptic, too. However, Coulomb

ellipses are symmetric about origin only for circular orbits. All other Coulomb orbits are eccentric since they

orbit about one off-center focal point and not the ellipse center like a Hooke’s law oscillator orbit.
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Fig. 9.11 Two 1-D oscillator phasor plots combine to give 2D-oscillator xy-trajectory.
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Chapter 10 Exponentials, logarithms, and complex phasors
A logarithmic potential curve U=In(y)=log.y was given by (6.11). Our first example is the flip or

inverse exponential curve y=e" since that function is so important for making the complex phasor e (“*",
Also, the population growth function y:et:exp(t) is one of the most used if not the most useful of

transcendental functions. Roughly, transcendental means not expressed by finite algebra or constructed by

Euclid’s strict rules. (However, like transcendental spirituality, it is easily approximated!) Later in this

section we will prove that the exponential is the only function that is equal to its slope or derivative.
d
af(x)z f(x) ifandonly if:  f(x)=¢" where: e =2.7182818... (10.1)

In other words, if €* is a force or potential curve then F(x) and U(x) are similar, in fact, identical.

Fmain(y) = ‘jl—i]: U(x). if and only if: U(x)=€" (10.2a)

For physicist’s definition (6.9) of force, e is the one for which potential and force are identical.

FPYs(x) = —62—5 = U(x). if and only if: U(x)=e™ (10.2b)

For now we use these slope-function relations to construct the exponential curve approximately.
Starting from origin (x=0) we use the fact that any positive number to zero power is 1. (e°:1) From that
point we draw a right triangle made of a unit altitude, a unit base, and a hypotenuse line of slope-1 as
indicated in Step-0 of Fig. 9.12. The hypotenuse line gives approximately the points just above and just
below x=0. Then subsequent steps move the right triangle Ax to a point on the previously constructed line to
make the next line. Since the slope is equal to the new function value, the base stays fixed at 1, but the
altitude grows with the function value and makes the new line and a new point up the *-curve.

This approximation is a rough one. It underestimates a concave curve and overestimates convex ones
because it puts the next point x+ax on a tangent from the previous point x. That’s OK only if the curve is
pretty straight and tangent slope is about the same at x+ax. A better approximation uses the tangent halfway
between neighboring tangents and extends that new slope to x+ax to find the next point.

Now if you rotate your y= e*-graph by 90° you get a logarithm U(y)=-In(y) graph as shown in Fig.
10.1 (lower right). Each U(y)-curve-normal defines a unit-altitude triangle whose base is the force F(y)=1/y.
The story of e : A tale of great intrest

Long ago banks would pay simple intrest at some rate r such as r=0.03 (3%) based on a 1 year
period. You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r-t)p(0). If
you put in $1.00 at rate r=1 (like Israel that once had 100% intrest.) you got $2.00 at t=1year.



©2008 W. G. Harter Chapter10. Exponentials and complex phasors 116
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Fig. 10.1 Rough constructions (a) exponential curve y=e*=exp(x). (b) Log potential. (c) 1/y-Force.

Later on fancy banks would pay semester compounded intrest p(5)=(1+r5)p(0) at the half-period
5 and then use p(5) during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.
P2 () =(+rHpG)= A+ rby1+r)p0)=3-31=9=225

Fancier banks would pay trimester compounded interest p(§)= (1+r5)p(0) at the 1/3"-period § or

1% trimester and then use that to figure the 2" trimester and so on. Now $1.00 at rate r=1 earns $2.37.

POy = A+ 5 p2) =1+ rD A+ rb) pl) = A+ rd )y +rH+rb)p0) =2 441 =8 =237
Still fancier banks would pay quarterly, monthly, weekly, daily, and so on. The race was on to give better

earnings at a given interest rate r. Let’s compare some different earnings on $1.00 at rate r=1. At first it looks

like you gain a lot by compounding more often. Then earnings slow to a halt just shy of $2.72.
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P = A+rHp0)= 1)11:—1=2.oo Monthly: pﬁ(z):(nr-lﬁz)lzpm)

12
(1) 1=2613

2 9 52

1=7=2.25 Weekly:  p=(1)=(1+r-5)2 p(0)=( 3] 1=2.693

365
1=84-237 Daily:  ps (r) = (1+ )" p(0) = (g é) 1= 27145

1 1 8760
p4(t)=(1+r-§)4p(0)=(?;) =SBo244 Hily: pro () =4k pO) =(38) T 1=2.7181

That halting point is Euler’s growth constant e=2.718281828459... that we’re after. Let's try huge
numbers (m) of multiplications in p"/™ ()= +%1)’" . (Get out a calculator. Rule & compass is useless now!)

p*™(1) = 2.7169239322 for m = 1,000
l’m(1) =2.7181459268 for m = 10,000
pl’m(l) =2.7182682372 for m = 100,000
pY™(1) = 2.7182804693 for m = 1,000,000 (10.3)
pY™(1) = 2.7182816925 for m = 10,000,000
1’"“(1) =2.7182818149 for m = 100,000,000
p“m(l) =2.7182818271 for m = 1,000,000,000

The solid figures represent numbers that stay the same as we raise m. It’s still a torturous way to find e. We
do a Billion (That’s “B” as in “Boy!””) multiplications (m=10°) just to get 6 solid figures beyond 2.71.
A better way expands binomial e=1lim __(1+%)"or its power ¢” =lim,_,_(1+-)"" forall rates r
and times t. We let mr-t=n and m =n/r-t to simplify it for huge multiplication numbers m or n.
¢ =lim, . (1+Ly" =fim | (140T)" (10.4)

The general binomial expansion turns exponential function e" into a power series in y =" with x=1.

-1 -D(n-2
(x+y)”=x”+n.x"‘1y+—n(’; ) r-2y2 =D =2) 3)‘(” )x”‘3y3+...+n.xy”‘1+y”

We actually save work as multiplication number n gets huge! (“Huge” means “as close to o as you like.”)
2 3
— . — — 1Y 1als: O'=1=1"!
(1+_) lin rt N nn-1(r-t N nn—1)(n-2) ret +M(Note factorials: 0!=1=1!,
n 2! n 3! n 21=1-2, 31=1-2-3, etc.)
Huge n makes n(n-1) cancel n? , and n(n-1)(n-2) cancel n® , and so on. The exponential e" series is born.
2 — (10 5b)

0' p= op!
Let’s try it out for r-t=1 to evaluate e to order -0. (The precision order o is the power of highest term used.)

p
=1+ f+21(” f) +%(F') = Z( ) (10.5a) e_1+1+2i+;+

Precision order: (0=1)-e-series = 2.00000 =1+1
(0=2)-e-series = 2.50000 =1+1+1/2
(0=3)-e-series = 2.66667 =1+1+1/2+1/6
(0=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24
(0=5)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120 (10.6)
(0=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
(0=7)-e-series = 2.71825
(0=8)-e-series = 2.71828
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Nine terms in series (10.5) give 5-figure accuracy (10.6) and do the work of a million products in (10.3).

That’s a million reduced to 8 sums and half-dozen or so divisions. It’s a big savings of arithmetic labor!

Derivatives, rates, and rate equations
Binomial expansions provide ways to find calculus formulas for slope or velocity introduced geometrically in

Ch. 1. Soon we will do the same for curvature or acceleration and other higher order calculus concepts.
Suppose someone gives you a plot of formula like x(t)=t? or x(t)=sin4t or an exponential plot of x(t)=e¢"
that we just did in Fig. 10.1. You should be able to estimate its slope at any point from its x versus t graph.
However, a binomial expansion may let you find an exact formula for its slope.
Consider a parabola x(t)=t* for example. Let’s find the slope ** of a line that goes through point x(t)
and a point x(t+At) =(t+At)? that is a tiny time interval At later. Binomial expansion gives Ax=x(t+At)-x(t).
AX=X(t+AL)-X(1)=(t+AL) 2 -t =t + 2t At+(At)*-P=2t At+(At)?
Slope ratio 2 follows. If r is tiny we ignore it. Then tangent slope v(r) =% is the 1% derivative of x(t)=t".

Ax _ 20-Ar + (Ar)

dx d ,
~ ~ =2t + At (10.7a) o v(t)=2t= = (10.7b)

This checks the geometry of parabola 2Ay=x? in Fig. 9.4. Slope is ?=2:=*, twice the x-value in units of 2.

& 2Tt
Consider an n-power curve x(t)=At". Binomial expansion of Ax=x(t+At)-x(t) has n terms, most in +...+.
AX=X(t+AD-X(D)=A(t+AL)"-At"=A+ANt" L At+ ... +A(AL)"-At"=Ant" L At+.. +A(AL)"

If Ar is tiny, only 1* term Ant™ in slope ratio 2" is not tiny-tiny. That 1* term is 1¥ derivative of x(t)=At".

Av_ AT A AT ey A (10.8a) oy = ane =L A (10.8b)
At At dt dt

Series for x(t)=Ae" is unchanged (for r=1) by gt. It does kill term number-w, but }o!r‘”t"" IS tiny-tiny-ting aNyway.

do_d, d dl ., dl ., d1 .

e'=—1l+—rt+——rt+——rt+——r't +.. (From (10.5a) and linearity)
dt dt dt dt 2! dr 3! dr 4!
=0+ r + —rt + —'r3t2 + i'r“ﬁ +... (From (10.8b) )
=0+ r + it + 5r3t2 + ;r“t3 +... (Factorial n!=n-(n-1)-(n-2)-...-1)
l 2.2 l 3.3 rt .
= r(1 + rt + Ert + ;rt +...)=re” (From (10.5a) again)

For 100% intrest (r=1), growth rate-of-Ae' equals Ae'. Otherwise, growth rate of Ae" is proportional to Ae".
To state that the growth rate of a function x(t) equals a constant “intrest rate” r times current value of x(t) is

to write a differential rate equation whose “solution” is x(t)=Ae". (The constant A is “initial capital” A=x(0).)
Rate equation : % =r-x(t) has solution: x(t) = x(0)e”" (10.10)

It is Malthus’s population explosion equation for positive rate r>0! It is radioactive decay equation for r<0.
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General power series approximations
Are power series like (10.5) useful for functions other than exponentials? Well, Mr. Maclaurin and Mr.

Taylor thought so. Series that bear their names are de rigeur in good math books. (And, in this one, too!)

Let’s start with a general power series like (10.5) but with arbitrary constant coefficients c,, c,, etc.
X(t)=cyte oyt togt teyt test Fote t" + (10.11a)

We derive c, by setting time t to an initial time t=0. (Like C-programmers, we count “uh-zero, uh-one, uh-two,..”
o = x(0) (10.11b)

So the 0™ coefficient c, is initial position x(0). Now we use (10.8b) to find a derivative of each term.
v(t) = %x(t) =0+c¢; +2¢yt +3cyt” +deyt? +5cst* + .+ ne, " + (10.11c)

Rate of change of position x(t) is velocity v(t). Setting t=0 derives c;.
¢, = v(0) (10.11d)

So the 1% coefficient c, is initial velocity v(0). Now find a 2" derivative using (10.8b).
a(t)= %v(t) = 0+2¢, +2:3c5t + 3deyt” +4-5cgt” +.+n(n—1)c, 1" + (10.11c)
Change of velocity v(t) is acceleration a(t). Set t=0 to get c,.

¢, = ya(0) (10.11d)

So the 2" coefficient c, is half the initial acceleration a(0). Now a 3" derivative:
i) = %a(z‘) = 0+23c; + 234yt +345ct” + ..+ n(n—1)(n—2)c 1" + (10.11e)
Change of acceleration a(t) is jerk j(t). (Jerk is a NASA sanctioned term!) Set t=0 to get c;.

c; =3, J(0) (10.11f)

So the 3" coefficient c; is initial jerk j(0) over 3! Now a 4" derivative:
i(t)= %j(t) =0+234c, +2-3-45ct+...+n(n—1)(n—2)n- 3)cnt”‘4 + (10.119)
Change of jerk j(t) is inauguration i(t). (If NASA can be silly, so can we!) Set t=0 to get c,.

Cy =7, i(0) (10.11h)

So the 4™ coefficient c, is initial inauguration i(0) over 41. Now a 5" derivative.
r(t) = %i(t) =0+234-5c5 +...+n(n—)(n-2)(n-3)n-4)c, " + (10.11i)

Change of inauguration i(t) is revolution r(t). (Ooops! Politically incorrect!) Quick set t=0 to get cs.

Cs =1, r(0) (10.11j)
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That’s enough iterations to show the Maclaurin series of any function x(t) that has decent derivatives.

x(1) = x(0) + v(0)t +3, a(0)t* +3, j(O) +3, i(0)* +1, (0)F +...+1, xr" + .. (10.12a)

By “decent” we mean the non-exploding types that we can deal with. The following is a list that shows some

of the notations used for the higher order derivatives discussed so far.

d .
v(t)= Zx(t) =x(1)

2

d(f) = iv(l’) = V([) = d_.X(t) — X(t)

dt dr

d d’ a3 (10.12b)
J@)=—a@®)=a(t)= —Zv(t) =ii(t) = —zx(t) =¥()

dt dt gt

d . d2 d3 d4
0 =4 0 =10)=—5a0=40)="FvO=VO) =" 350 =F®)

dt dt i 0

The “dot” notation writes n-derivatives of x(t) by puttting n-dots over x. This may help prevent writer’s
cramp. But, j-dot looks, well, kind of jerky. It’s common to use primes (y’ =%;,y” =§’;§’,etc.) for x-derivatives.

How good is a power series (10.5) at faking x=e' beyond t=1listed in (10.6)? We plot various orders of

approximation in Fig. 10.2. The 1% order (2-terms of (10.5a)) is just a straight line of slope 1. A (3-
term) , 3" order cubic, , etc. each peel off x=e' in sucession. All meet at (t=0,x=1).
2000

quartic —», ' L 6th

quadratic

Fig. 10.2 Comparing x=e' with its n""-order approximate power series.
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Sine-wave power series

A severe test of power series is their ability to fake sine waves. The derivative and rate equation for the sine

function x(t)=sinwt uses expansion x(t+At)=sinw(t+At). To expand sin(a+b) or cos(a+b) we use Fig. 10.3.
sin(a+b)= cosa sinb + sina cosb (10.13a) cos(a+b)= cosa cosb - sina sinb (10.13b)

o cosa«cosb
e W )

sinatsinb
—>

A
cosaisinb

A4

) a
sin(a+b)= A
cosa-sinb+sina-cosb

b sindjcosb

a \

< > ) .
cos(a+b)=cosa-cosb-sina-sinb

Fig. 10.3 Geometry of sine and cosine expansion identities.

Expansion of Ax=x(t+At)-x(t) for sine or cosine is easy since sinw-At=w-At and cosw-At=1 for tiny At.

sin (¢ + At) - sin @-t cosw(t+ At) - cosw-t

= CcoS @+t sin @-At + sin @-f cos @-At - sin -t = COS @+ cOS W-At — sin @t sin @-At - cos -t
=cosw-t (w-At) +sinw-t (1) -sin -t =coswt (1) —sinw-t (w-At) -cosw-t
= (w-Ar)cos -t (10.14a) =—(w-Ar)sin@-t (10.14b)

We will need the sine and cosine slope (derivative) formulas that follow from this.

. sinw(t+ At) - sinw-t cos m(t+ At) - cosw-t
—sinwt= —coswt=

dt At dt At
= - coS @t (10.15a) =—@-sin@t (10.15b)

A list of series coefficientsc, = ,ng,‘ in (10.12) for sine x=sin ot and cosine x=cos wt is worked out below.

1
n

¢p=x(0)=sinw-0=0 ¢o =x(0)=cosw-0 =1
¢; =v(0)=+w-cos®-0 =+w ¢ =v(0)=-wsinw0 =0
0 2 0 2 2
szﬁz_w_.sinw.():() szﬁz_w_.cosw.oz_w_
2! 2! 2! 2! 2!
/0 3 3 ‘0 3
c3:M:—w—-cosw-0:—w— c3:M:+w—-sinw-O:0
3! 3! 3! 3!
/0 4 0 4 4
c4:Q:+w—-sinw-O:0 c4:Q:+w—-cosw-O=+w—
4\ 4! 4\ 4! 4!
0 5 5 0 5
05=M=+w—-cosa)-0=+w— cszﬂz—w—-sin(o-ozo
5! 5! 5! 5! 5!

A sine derivative repeats after four orders: ...sint, cos t, -sin t, -cos t, (again) sin t, cos t, -sin t, -cos t, (etc.) .
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this repeat-after-4-pattern of factors 0,1,0,-1 of " terms.

3 5 5 4
sina)t:0+wt+0—(wt) +O+(wt) +0-— coswt=1+0—(wt) +0+(wt) +0-—
3! 5! 21 4)
(10.16a) (10.16b)

The sine is an odd function to time reversal (sin(-t)

-sin(t)), but cosine is even (cos(-t) =+cos(t)). Thus sine

has only odd powers p=1,3,5,... of time and cosine has only even powers p=0,2,4,.... Series plots (10.16) in

Fig. 10.4 have highest power or order 0=1%2",3" 4" etc. Number n of terms is °5' for sine and °4 for cosine.

i

(a) x(1)=

(quarnic

COS 1

™./

quptdratic

grabola)

Ind

=5in |

Fig. 10.4 Comparing (a) x=sin t and (b) x

It takes a 9™ (for sin t) or 10" (for

better precision. Then 10 terms gives two

=cos t with their n""-order approximate power series.

cos t) order series of 5 terms to get one full oscillation with 5% or

oscillations, and so on. Fig. 10.4 shows that precision breaks down

quite explosively. Polynomials are exponentially degrading approximations of wave motion.
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Euler’s theorem and relations

Sine, cosine, and e power series (10.16) and (10.9) lead to an 18" Century crown jewel of mathematics. It is

due to a close relation of these series and the functions they represent. It is hard to imagine, but exponential

intrest rate growth and simple harmonic oscillation are related. As it turns out, the relation is quite imaginary!
Suppose the fancy bankers really went bonkers and made intrest rate r an imaginary number r=ié.

Imaginary number i =~/—1 has powers with a repeat-after-4-pattern: i°=1, i'=i, i?=-1, i*=-i, i*=1,etc... It fits

the pattern leading to cosé and sine series (10.16). Series (10.9) with imaginary rt=i6 joins the (10.16) series.

(i6)* . (i6)° . i6)* s (i)’ .

i0_ 4, . .
e’ =1+i0+ Y 3 2 51 (From series (10.9))
2 3 4 5
c1rio-8 L8 L0 L o imples: e, 2, P, it P i)
2! 3! 4! 5!
2 4 3 5
={1—9—+9——...]+[i9—i0—+ie——...] (To match series (10.16))
21 41 315!
¢ = cosH + isin@ Euler - DeMoivre Theorem (10.17)

The resulting Euler-DeMoivre Theorem is a beautiful identity and a very powerful tool as we shall see. First

and foremost it is a complex wave phasor function y = A¢~"®’ that we will use from now on. (Note: 6=-w.)

[10)]

V=AY = Acoswt—iAsinwt=Rey +ilmy =y +iy (10.18)

Fig. 10.5a plots ¢ in the complex plane, a real-vs-imaginary graph. Fig. 10.5b showsy = Ae '®" as a complex

phasor clock. Its real part is position Rey=x(t) and its imaginary part is w-scaled velocity Imy=v(t)/w. Polar-

to-Cartesian conversion (10.19a) and vice-versa (10.19b) are easy by scientific calculator. (Recall end of Ch. 1.)

- |vy=Rey(t) =x(t)= Acoswt r= A—lyl= 2y 2
oo Wy . (10199 oo VYT (10.190)
' v, =Imy(D) = = —Asin ot form |6 = —ot=arctan(y’, /v, )

Real part Rey is the “is” (that Clinton sought in 1997) and Imy is what Rey is “gonna-be” in -cycle (as in
““gonna be in trouble!” A mantra,“Imagination precedes reality by one quarter” works here as in US corporate
world.) Euler expo-sino conversion identities relate cose, sing, and e**®. A conjugate y* reflects i with —i.

— +i0= —iwt= i 9:; +i6 -6
v =re re r(coswt —isin wt) (10.20a) cosf=5("" +e ) (10.20b)

* —i6 +iot f i sapn=1 (oti0 —i6
Y o=re " =re = r(cos wt + isin wt) sinf=5(e"" —e"")

A special case is e™=-1. (We’ll also use a real n-exponential: e"=0.04321.) Other special cases are noted.

T T T .31 51
+i= —15 +i— —-i— +i—

T =1=M e 2=i=— 2, e 4:é(1+i):—e 4 =—p 4., (10.21)
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(a) Complex plane and unit vectors

imaginary ) imaginary
axis eie_x_l_iy et 2= i1 axis
. et (1+ A2
=sin 0 »
* e =_] ]  real
> X=a | red axis
cos 0/ axis , , :
o HiSTA_ i34 e = (1-)N2
= (A2 e 2=

(b) Quantum Phasor Clock y = Ae i@ = Acoswi—i Asinot=x+iy

Im W\(The “Gonna’be”)

Re y
x(t) = Acoswt

Re v CARTESIAN
COMPONENTS

Phase angle or Argument
O=—wt = ATAN[V(t)/wx(1)]

POLAR <+—Imy
C.OMPONENTS V(t)=v(t)/w= -Asinw
Magnitude or Modulus .
% Ae'lwt t
A=lyl=y*y

Fig. 10.5 (a) Complex plane. (b) Phasor clock. Cartesian form uses (Rey, Im ). Polar form uses (jy,6).

Wages of imaginary intrest: Phasor oscillation dynamics
By now bankers should know what happens when you use imaginary intrest. The accounts oscillate up and

down and the imagineering bankers oscillate in and out of the slammer. (At least that was the way until 2001
when the Bush administration passed the No Banker Left on His Behind Act that also outlawed reality.)

Consider exponential rate equation (10.15) with negative imaginary rate r=-iw.
Imaginary rate equation : % =—iw-x(t) has solution: x(t)=x(0)e ' (10.22a)

It becomes a real 2" order equation if we apply the derivative operation to both sides.

A0 x4 i) —a?
e dt g2 i — (1) = ~i0- (~ia-x(1) = ~@"x(1) (10.22b)

It is the Newton-Hooke simple harmonic oscillator equation, but it has the same solution as (10.19) above.
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d? :
Newton — Hooke HO equation : —; =—w’x(¢) has solution : x(t) = x(0)e " (10.23a)
dt

It combines Newton’s force law F=m-a=m i and Hooke’s force law F=-k-x. The w value repeats (9.9b).

2
md—x =—k-x(t) has angular frequency: = \/E (10.23b)
dr* m

What Good Are Complex Exponentials?

Complex Exponentials are used to describe oscillation, resonance, waves and fields. We don't use them
just to be cute! Let’s look at some compelling reasons for using imaginary or complex arithmetic.
Complex numbers provide "automatic trigonometry"

If you have trouble remembering trigonometric identities then this is a good reason all by itself to use
complex numbers. For example, if you're taking a test and you can't remember what is cos(a+b), then just
factor ei(@+h) = eiagib expand exponentials into ei@ = cos a + i sin a and multiply them out.

ci(a+b) = piagib
cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b](10.24a)
That’s two trig identities for the price of one! The real part gives the cosine relation (10.13b).
cos(a+b) = [cos a cos b - sin a sin b] (10.24b)
The imaginary part gives the sine relation (10.13a).

sin(a+b) = [sin a cos b + cos a sin b]. (10.24c)

Complex exponentials Ae-®t tracks position and velocity using Phasor Clock.
Recall discussion of phasor diagram in Fig. 10.5b. Real and imaginary give position and velocity.

Complex numbers add like vectors.
Physics of wave interference involves the addition or subtraction of oscillating signals. If the signals

are represented by complex numbers then you simply add (or subtract) their Cartesian components.
Zaum =2+ 7= (X +y) + (X +1y) = (x+X) +iy +)
zdiff =z—2' = (X +1iy) —(X" +1iy) = (x =Xx) +i(y -y
Before adding, convert z and z' to Cartesian (x,y) form if given in polar form z=rei¢ and z'=r'ei¢". Radius r of
a vector z is its magnitude or complex absolute value |z|. Square |z|? is proportional to energy or intensity.
2l = r =62 +y?) = ([x - iyl [x + iy]) = V(z*2)
We write |z|* as product of z and its complex conjugate z* = x - iy =re-i¢ to derive radius |zsym| of a vector

sum zgym or radius |zgqisf| of a difference zgjss. It is an easy way to get the well-known cosine laws.
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|ZSUM| = 'J(Z + Z')*(Z +7) = J(rei‘p +r et )*(rem) + r’em)’) = J(re_iq’ +re )(reiq) + r'ei‘p’)

erz +r2+ rr'(ei(¢7¢,) + eii((pid),)) =Jr2 +r2 42 cos(p—¢’)

(10.25a)

|ZD1FF| = J(z -7) *(z -7)= 2o cos(([) —(])') (10.25b)

Vector diagrams of sum, difference, and product of complex z and z”are shown in Fig. 10.6.

(c)

Fig. 10.6 Parallelogram diagonals are sum zgym=z+z" and difference zgijff=z-z' vectors.

Complex products provide 2D rotation operations.
A product zz' of two complex numbers expressed in Cartesian formasz=x + iy and z’=x'+ iy'is

27' = (x+1y) (X' +iy") = [xx" - yy'] + i[xy" + yx].
It is simpler if the numbers are expressed in polar formasz =rei¢ and z' = r' ei?".
27 = (rei9)(reid) =rr ei(@+e), (10.26)

Note that multiplication results in addition of exponents and a sum of polar angles. Radii multiply to
give a product rr* but angles add to give a sum (¢+¢'). You might imagine z rotating vector z' by ¢ radians or
that z' rotates z by ¢' radians. Consider in detail a rotational operator ei9 on a vector z =(x + iy).

el9.z = (cos¢ + i sing)-(X + iy)= X cosg —y sing + i(X sing + y cos¢ ) (10.27a)

Ch. 5 2-by-2 rotation matrix R, (Fig. 5.3d) acts on a 2D vector r to give results precisely similar to ei¢-z.

R, ,or =(xcosp—ysin ¢)é_+(xsing+ ycos q))éy (10.27b)
cos¢ —sing (x| Xcos@— ysing (10.27¢)
sing cos¢ J\y - xsin@ + ycos¢ '

Complex products set initial values
Phase angle -t of phasor e-1®t rotates clockwise with time. Multiplying e-i@t by a complex amplitude

A =|AJeiP sets its phase back by angle p and its radius to |A|. Amplitude A is the initial value x(0)=|A|eiP.
x(t)=Ae 1ot = x(0)e-10t = |Aleipgriot = |Ale-i(wt-p) (10.28)
Such products set initial values of oscillator clocks. A positive angle p is a phase lag since it moves the

phasor counter-clockwise and sets its clock back. A negative angle p=p| gives a phase lead.
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Complex products provide 2D “dot’(+) and “cross”(x) products.
Consider any two vectors A=A,+iA, and B=B,+iB, and their “star” (*)-product A*B.
A*B=(A_+iA ) (B_+iB )=(A_—iA )XB_+iB
(A, +iA)) (B, .y) (A, —iA,)(B, y). (10.29)
=(A B, +AB)+i(AB ~AB )=A*B+i |AxB |ZL(W)
Real part is scalar or “dot”(*) product A-B. Imaginary part is vector or “cross”(x) product, but just the Z-

component normal to xy-plane. To better understand this math trickery, we rewrite A*B in polar form.

A*B =A%) (B|e% ) =|A|e | Bl =|A|| Bl %%
(10.30a)
=|A||B|cos(6, —6,)+i|A||B|sin(6, —6,)= A*B+i|AxB|,
Standard 3D definitions of dot(¢) and cross(x) products of 3D vectors are precisely similar.
A B =|A|[B|cos(£}) | AxB|=|4||B|sin(£5) (10.30b)

Expansion (10.24) of A-angle a+b= Aﬁ =0,-6, relates rei forms (10.30) to xy-forms in (10.29).

A B =|A||B|cos(8,-6,) | Ax B |=|A||B|sin®, -6,)
= |A| cos@, |B| cosB, +|A| sin@ , |B| sin6, = |A| cos@, |B| sin6, —|A| sin6 , |B| cosB,
= A B, + Ay By = A, By - AyBx

Complex deriviative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

By relating (z,z*) to (x=Rez,y=Imz) we may define a z-derivativeg and “star” zx-derivative 3’; .

. 1 . df _ oxdf ,dvof _1df _idf
Z =x+uy X =3 (z +2%) dz™ dzox 'dzdy T~ 20x 20y (10 31)
* L, _ df _9x 9f L9y of _19of Lidf '
=Xy Y =2i (z —2%) dz* 7 dz*dx T dz*dy ~ 20x ' 20y

Derivative chain-rule shows real part of g has 2D divergence V+F and imaginary part has curl VxF.
. . . of. o, i 9 2 i
It (Forif,) =5 Qi N+ if,) =5 Gr 45+ G — 5 ) =3 VeF +5 V| (10.32)
Now we can invent source-free 2D vector fields that are both zero-divergence and zero-curl by taking any
function f(z) and conjugating it (change all i’s to —i) to give f (z) for which Zf; =0. For example, if f(z)=az

then f (z<)=a-z==a(x-iy) is not a function of z so it has zero z-derivative, hence zero V+F and zero |VxF|.
F=(F,F,)=(ff )=(ax,-ay) has zero divergence: VeF=0 and has zero curl: |[VxF|=0. (10.32)
A plot of vector field F=(f",,f",) =(ax,-a'y) in Fig. 10.7 shows a divergence-free laminar (DFL) flow field.

Complex potential ¢ contains “scalar”’(F=V®) and “vector’(F=VxA) potentials
Any DFL flow field F is a gradient of a scalar potential field @ or a curl of a

F=Vo F=Vx
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There is a complex potential ¢(z)=d(x,y)+iA(x,y) whose z-derivative is f(z) and it comes with its complex
conjugate ¢ (z*)=®(x,y)-iA(x,y) whose z=-derivative is the f'(z*) that we use to plot DFL flow fields F.

f@=1% (10.33a) f@=9  (10.33b)

oD

Derivative 4% by (10.31) has 2D gradient Vo —[

dy

p)
o
} of scalar @ and curl Vx ={ ; ] of vector
dy

4=t (@i =S G HEP=iA) = G HE ) +5 (G 15 =E VP43V (10.34)

Some more math trickery has “vector-A” be just a “Z-component” A=A e, normal to the complex (x,y)-plane.
So A(x,y)=A.(x,y) is treated as a single function of (x,y) like scalar ®(x,y). Also, a mathematician definition for
force field F=+V® replaces our usual physicist’s definition F=-vU of (6.9). (No annoying (-)-sign for us now!)

To find g=®+iA we integrate f(z)=a-z to get ¢ and isolate real (Re¢g=®) and imaginary (Im¢=A) parts.

0= ® +i A=[f-dz=[az-dz=} az* =% a(x +iy)*

R (10.35a)
:% a(x* —y*) +i

Note that either part gives the whole field F. The factors 7 in (10.34) reflect this elegant symmetry.

g(b a:( \'2) ax g g ax
Vb= a’; - BX =( ]=F (10.35b)  Vxa=| © [=| ¢ :( ]:F (10.35c¢)
3) ) e
Y

Scalar static potential lines ®=const. and vector =const. define a field-net in Fig.10.7.

IS5}

fi(z¥)=z¥=x-iy
Fxy=(x,-y)
Potentia]:

Nz)=2°

_)62 \2+l

=0 +i

Fig.10.7 Complex field f(z)=z of F=(x,-y) vectors on potentials of static @=(x*y*)/2 and flux A=xy.
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4-pole at 4-pole at
X,y Xy

Fig. 10.8 Stereo-3D view of Fig. 10.7(¢(z)=2%/2) plots static potential ® normal to xy-axes.

Complex integrals [f(z)dz count “flux”([Fxdr) and “vorticity”( JF-dr)
Integral f(z) (10.35a) between point z, and point z, in Fig. 10.8 is potential difference A¢=¢(z,)- ¢(z,)

between the end-points. In DFL fields, A¢ is independent of the integration path z(t) connecting z; and z,.

Ap= ¢(22) - (P(Zl) = .[2 f(Z)dZ = (D(sz yz) - (I)(Xl, yl) + i[ (X2, yz) - (X11 yl)]
1

(10.36)
Ap = AD +i A
The real part A® of A¢ is work j2F.dr done pushing r up a hill in Fig. 10.8. (Now force F= V® points up-

slope.) Since F=(f",, f',) is plotted using f'(z+), we set f(z)=(f (z*))" to get real and imaginary parts of f(z)dz.

*

[ f(2)dz = J(f*(z*))* dz = j(f*(z*))*(dx+idy)= (i) (axridy)= (i) )(dx+idy)

= [(fdx+ fdy) + [(f, dy - f dx) (10.37)
= JFedr +iJFxdreé, = [Fedr +i[Fedrxé,
= JFedr +i] FedS where:  dS=drxé,

Real part j2F.dr sums F projections along path vectors dr to get A® in (10.36). Imaginary part [?F.dS=A
sums F projection across dr that is, it sums flux thru surface elements ds=drxe, normal to dr to get AA.
One power-law field f(z)=az" lacks a power-law potential g(z)= 2,2"**. Itis f(z)=2=az". Its integral is
a logarithmic potential ¢(z)=a-In(z)=a:In(x+iy). (Recall (6.11).) Use In(a-b)=In(a)+In(b), In(e')=i6, and z=re".
¢(z)= D +iA = [ f(2)dz = [ £dz = aln(z) = aln(re’®) = aln(r) + i ad (10.38)
Potential a:In(z) is the field of a line of charge q if a=q is real and a line of current J if a=iJ is imaginary. Fig.

10.9a is a diverging F-field of unit charge (g=1) and Fig. 10.9b is a curling F-field of unit current (J=1). Line

charge F-field is like an electric E-field. Line current F-field is like a magnetic B-field of a wire. It is a vortex.
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(b) Unit Z-line-vortex field f(z)=i/z

Y

Field:
fi(z¥)=-i/zr=-ie'%
Frxy=(y,-x)/r?

Potential:

f(z)=1/zx=€'r
Fy=(x,y)/r?

Potential:

#z)=Inz Mz)=ilnz
=In r+i =0 +i
=D +i =®d +i

Fig. 10.9 Fields due to a unit Z-line-source normal to center. (a) Real source a=g=1. (b) Imaginary a=iJ=i.

F-field and radial streamlines (A=6 =const.) diverge normal to equal-® circles (®=r =const.) in Fig. a. F-field
and circular streamlines (A=r =const.) curl clockwise normal to radial equal-® lines (®=6 =const.) in Fig. b.
(The clockwise (-i)-sense of rotation results from plotting f*(z*)=-i/z* as our (*)-convention requires.)

Stereo-3D potential plots of real-line-source field shown in Fig. 10.10a show mathematical structure
of its ® and A potentials that lets us compare them to imaginary-line-source potentials in Fig. 10.10b. Real
part ®=In(r) of (10.38) for real (a=1)-source in Fig10.10a is a surface like a . Blue-(A=6=const.)
-streamlines stream down its throat normal to (®=r =const.) level circles.

Below that ®-vs-(x,y)-plot is a 3D A-vs-(x,y)-plot for the same real source in Fig. 10.10a. Imaginary
part A=6 of (10.38) gives radial steps that are level lines of a single helix or helicoid. Red-(®=r =const.)-lines
stream up its spiral staircase normal to (A=6=const.) steps. At the top step A=6=xr, above the —X-axis, is a
“waterfall” of red lines falling by AA=2x straight to bottom helical step A=6=-r. This 2zi-fall of complex

potential ¢(z) by Ag=iAA=2zi at 6=tz equals the loop integral of f(z) from 6=-r to 6=+x.

Ap=iAA =§ f(2)dz=§% =2mi (10.39)
Imaginary part AA of a loop integral counts real source (“flux’) since loop flux is Im¢ f (z)dz in (10.37). Real
part Ad=Re9 f(z)dz =¢§F.dr counts imaginary source (“vorticity’) since only that makes work around a loop,

that is, perpetual motion! In Fig. 10.10b,® and A switch roles to make imaginary-line-source-potentials.
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(a) Unit Z-line-flux field f(z)=1/7

Field:
f(z9)=1/zx=€%r
Flxy=(xy)/r?
Potential:

#z)=Inz

=ln r+i

=D +i

1-pole(flux) I-pole(flux)
X,y Xy

%

)|

,..,.—-—XT”"

\ N\

1-pole(flux)

A)&\’

Fig. 10.10(a) Real unit line-source (a=1) with diverging F-field resembling E-field of electric line-charge.
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(b) Unit Z-line-vortex field f(z)=i/z

Y

Field:
fi(z%)=-i/z+=-ie'%)]
Fy)=(y,-x)/r?

Potential:

#z)=ilnz
=0+
=@ +i

I-pole(vortex)-— 1-pole(vortex)
X,y o X,y

-pole(vortex);

1
Arxy

Fig. 10.10(b) Imaginary line-source (a=i) with curling F-field resembling B-field of electric line-current.
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Complex derivatives give 2D multipole fields
Of all integer-power-law field functions f(z)=z" of z only a/z =az* has a non-power-law multi-valued

integral and potential ¢(z)=]az 'dz=alnz (10.38) and non-zero flux-work-loop integral §az 'dz=2mia (10.39).

This special f(z)=az" is a 2D line monopole field and ¢(z)=alnz is its monopole potential of source strength a.

a_ d¢1—pole

fI-pole (Z): “_
<

(10.40a) o' P (2)=alnz (10.40b)

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2

thus separated by a small interval A. This sum (actually difference) of f*°"*-fields is called a dipole field.

. a a —a-A i A A 172
fdzpole(z): - = — ¢dlp0[e(Z):aln(Z —5)—aln(z +§)=aln n
zt; 25 7 t3

If interval A is tiny and is divided out we get a point-dipole field 7°* that is the z-derivative of fP°",

_ 1-pole 2-pole 1-pole
AT AT (10, 41a) prpole 24 _d0 T (10. 41b)

2-pole __
! 72 dz dz z dz

A point-dipole potential ¢* ™" (whose z-derivative is ) is a z-derivative of ¢'™". Pair (10. 41) looks like a
Coulomb force (9.1) and potential (9.2) of 3D point monopoles. However, 2D dipole field (10. 41a) is quite

different as is 2D potential (10. 41b) whose ®=const. and A=const. lines make a circle-net in Fig. 10.11.

¢2-pole=ﬁ: a. = a. x—z:yz ax +i —ay =gcos9—izsin9
z ox+iy x+iyx—iy 324y xP4y? o r (10.42)

:(I)Z-pole+l- 2-pole

(Note that complex z=x-+iy is cleared from the denominator by using z"=x-iy to give real r*=z"z=x*+y’.)

Scalar potentials
b= (a/r)cos 9 =const.

r=(a/®)cos 6

SV
7

| a/®
Field:
[ (24)=1/2 =201 S~ —
F(xy)=(cos20,5in26)/r =(a/A )sin 6
Potential:
z)=1/z
=(cosOr+i =(a/r)sin O=const.

= O 4

Fig. 10.11 Dipole F-field f(z)=1/z* and scalar potential (®=const.)-circles orthogonal to (A=const.)-circles.
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2-pole 2-pole
X,y X,y

Fig. 10.12 Stereo 3D plot of dipole ¢(z)=1/z scalar potential ®(x,y) with A-streamlines between poles.

Complex power series are 2D multipole expansions
A z-derivative turns 1-pole fields into 2-pole fields in (10. 41). It makes a copy of 1-pole in (10. 40) with a

sign change and puts the (-copy very near the original. What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f*°** and potential ¢**°*, each a z-derivative of "' and ¢?*°".

2-pole 4-pole 2-pole
i: ldf — d(b (1043a) ¢4—pole — —L: ld¢

f4—pole_
B 2 dz dz 272 2 dz

(10.43b)

Fig. 10.13 shows 4-pole structure. Two +«-poles loom above Y-axis and two -«o-poles lurk below X-axis . The
F-field vectors and their A-streamlines are shown running at 90° to ®-equipotential lines in Fig. 10.13.

4-pole
Xy

Fig. 10.13 Stereo 3D plot of quadrupole ¢(z)=1/z* scalar potential d(x,y) with A-streamlines between poles.
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Field:
f(z%)=1/7 =30
F(xy)=(cos36,sin30)/r°
Potential:

2¢(z)=1/7?
=(cos20)/r*+i
= O 4

Fig. 10.14 F-field f(z)=1/2° of 4-pole with scalar (d=const.)-equipotentials normal to (A=const.)-streamlines.

A field f(z) with sources only at origin (z=0) or at infinity (z=0) may be given by power series that
generalize Maclaurin series derived in (10.11) by using both positive and negative powers z*". Series Za,z*" is

called a Laurent series or multipole expansion (10.44) of a given complex field function f(z) around z=0. All

field terms a,,,z™" except 1-pole - have potential term a,,,z"/m of a 2"-pole at z=0 (z=w) for m<0 (m>0).
f(z)=...a_3z_3 + a_zz_2 + aflz_l + aq + az + a2z2 + a3z3 + a4z4 + aszs +...

. 22—pole 21—pole ZO—pole 21—pole 22-pole 23-pole 24—pole 2 -pole 26—pole

at z=0 at z=0 at z=0 atz=co atz=oo  atgz=oo  atz=oo atz=oo  at z=oo (10'44)

a a a a a a a
¢(Z)=...;32_2+ =2, 4 alnz + ayz + —lzz + —2z3 + —3z4 + —4z5+ —5z6 +...

-2 -1 2 3 4 5 6

The unique 1-pole(2°-pole)¢-term a_,Inz is not a constant a.,z’=a.,. (Constant-¢ has no field: f=%§’=§f-1=o)
Also a 1-pole at z=co gives zero field near z=0. However, a 2*-pole at z=c gives a constant field f(z)=a, near
z=0. A quadrupole (2°-pole) at z=co gives the linear field f(z)=a,z shown if Fig. 10.7, but a 2*-pole at z=0 gives

the field a,z° in Fig. 10.14. Octupoles (23-poles) at z=c (or z=0) give a,z* (or a,z*), and so on for m=4,5,...
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The potential ¢g-expansion is most useful for revealing multi-pole structure. A negative power ¢-term
a..1Z"/m belongs to a 2™-pole at z=0. A positive power ¢-term a,,,z"/m belong to a 2™-pole at z=o. Pole field
geometry involves mapping z-points onto a sphere so z=0 is its North Pole and z=« is its South Pole in Fig.
10.15. There a stereographic projection maps a point z=x+iy on the z-plane tangent to North Pole into a point
w=1/z=u+iv in the inverse w-plane tangent to the South Pole. The map geometry uses an inscribed rectangle.
A pair of red unit circles |z|=1 and |w|=1 map into each other. Any point z inside the |z|=1 circle maps into a

point w outside the |w|=1 circle as shown and vice-versa outside z maps to inside w.

N /

s —

2\

W=uU+1v
=1/7

Fig. 10.15 Stereographic projection of z-plane through a unit-diameter sphere to inverse 1/z=w-plane.

w—pane

Replacing z with w=z" in (10.13) switches positive multi-pole-m terms in potential ¢ with negative ones.

a a a a a
<l>(z)=...;23z_2 +;23z‘2 + ;12[1 + oa Iz + ayz + ?1Z2 + ?zf +... (from (10.44))
¢(w):...a;23w_2+a;23w_2+ a;lzw_l + a lnw+ aqw + %wz + a?zwa +... (with z=w™)
a a a a a i
=272 4172 aoz_l - a_;lnz + 2+ 2724 32 4 (withw=z?)
3 2 -1 -2 -2

But, the unique monopole source term stays put with only a sign change (In =-Inz) as seen in Fig. 10.16a.
Constant field f=a, in (10.44) appears if there is a dipole at the South Pole and, vice-versa, a dipole field at the
North Pole appears to be a constant field near the South Pole as seen in Fig. 10.16b.
Of all 2™-pole field terms a,,;z"*, only the m=0 monopole a,z" has a non-zero loop integral (10.39).
$ f(z)dz= §f>a_lz_ldz =2mia_, a, =2lm- $ f(2)dz

This m=1-pole constant-a_, formula is just the first in a series of Laurent coefficient expressions.
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3= $F @z L ay = §2 )z L a =1 § f@)de . ay =,

X
N

(+) monopole field
at North Pole

’ 2m

(a) (b)

dipole field centered
at North Pole

is constant field
near SouthPole

is (-) monopole field
near SouthPole

LAy
/. s

Fig. 10.16 Projective sphere view of North Pole (z=0) sources. (a) monopole (b) dipole.

—
>

Cauchy integrals

Source analysis starts with 1-pole loop integrals §z 'dz = 2zi or, with origin shifted §(z —a) *dz = 2zi.
They hold for any loop around point-a. A continuous function f(z) is just f(a) on a tiny circle around point-a.

% = flaf—d: = 2if(@) (10.452) fa )_—98 A (Z) (10.45b)

The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(@_ 1 . f@2) d’f(a) _ 2 f(z)d d*f(a) _ 3t . f(2) .__d”f(a)zn_! f(2)
da 27w (z—a)® ' da® 27 (z-a)® = da® 2~ (z—a) " da" 27 (z—a)™!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(@)= E an(z—a)" where : an:LEﬁ&dz :ld”f(a)

:n>0 10.45c
it i gy e T (10459

If the function f(z) has no poles inside the contour then only positive powers n>0 are needed in its expansion
and the series above reduces to a Taylor series or (if a=0) a Maclaurin series like (10.12) derived previously.
There the n™ expansion coefficient a, is given by n derivative of f(z) as in (10.45c) above. Otherwise,
negative powers are needed with coefficients given by n™ order pole loop integrals above.

This represents just a “tip of an iceberg” for an enormous subject of complex analysis. We shall use
only tiny portions of this grand mathematical subject, and later we will consider generalizations of complex
numbers to hyper-complex quaternions and spinor operators. This takes the analysis from a 2D framework

into a 3D and 4D description that is more like the one we live in.
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Below are details of dipole function geometry in Fig. 10.11 and the Lorentzian geometry discussed later.
A _ o
0 y r sin

y= r sinf b cotw(_\—(]/b)cos%ine

- )
b cotd 5 —(]/bism 0 D
1 X r=(1/b)cosH

o=
o

X
r=(1/b)sinO /g/ n‘/z_N
X \ l J
b¢ b g/ b 7
y X b cotd b? cosH b?
: 2 2 — = = =
2=b2 cot20=h> cos?0 b2 1-sin"0 _ Lz 2 y  (I/b)cosBsin®  cosbsin®®  sin%6
sin20 sinZ6 sin“0
b . V=5
X2+b2 - i - 2 Y _X2+b2 x2+b2= b_2 = 1 X2+b2
sin®® Y |Common Lorentzian function I. sin“® ¥y |Common Lorentzian function II,
(imaginary “absorbtive” part) (real “refractory” part)
A N
1 1
b b
! ¥ 7
2_b M
M b % / %/?
) 1—> 2 b

Z A/// =

=
| A

| ——
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Complex damped oscillator

In (10.22) and (10.23) are oscillator equations with complex ¢ ¥ solutions. Here is one more example.
. d*x dx = - . —iQt
Damped HO equation : ——+ ZFE +@ox(1)=0 has solution : x(t) = x(0)e (10.46a)
dt

Now a complex phase rate Q depends on friction damping coefficient 2" as well as natural frequency w,.

d’ d - ) 2 . 2 ") . .
(d?+2rz+wo)x(0)e B =0=(-Q" - 2IiQ+wy)x(0)e™™ has solutions : Q, =—iT +\Jo;-T" =—il o

Complex rate Q gives both a r-slowed frequency . =+/w; T and r-decaying amplitude|x(s)| = |x(0)[e """

x() = (decaying amplitude)e™"SWed Jreauenent — ()~ )e @ Where: op = ,/a)(z) . (10.46b)

—l0r

We choose the first root ©, so phase ¢ " moves clockwise like the phasor clock in Fig. 10.5b.
If damping is T =0.2 then a 1Hz oscillator (w,=2r) is slowed by only .05% of 2n to w, =6.280.

op =02 ~T? =0, -3 ([% /) +...= 6.2831853 - 0.003183 +.. = 6.280002 +... = 6.280001  (10.46c)

More significant is exponential decay of amplitude |x(t)] down to 5% of |x(0)| in time interval ts,,=15 sec.

3 3 T T
tsg, = F_ E =15 (10.46d) Lo = F = E =15.708 (10.46d)

Fig. 10.17 shows the exponential decay envelope. An easy-to-recall 5% approximation is e =0.05. A more
precise one is ¢ " =0.04321. Decay rate sounds negative so we use lifetime, usually a e~3=5% lifetime. For
more precise calculation, we use e " = 4.321%-lifetime such as 7/I'=15.708sec. in (10.46d).

A damping of T =0.2 reduces its natural 1Hz frequency only by about 0.05% to 0.9995Hz. This tiny
frequency lag could be noticeable in a graph like Fig. 10.17 only after about 200 seconds, at which point it is

well off the page and way too damped-out to see.

—_

Fez
Decay-to-5% Lifetime

At5%23/r=155

et

Fig. 10.17 Phasor z and corresponding coordinate versus time plot for wgp=27 and I'=0.2
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Complex response to stimulus:Lorentz-Green’s function

A complex phasor e-i@ t also describes stimulated damped harmonic oscillation (SDHO). Consider a

monochromatic (single-frequency ax) accelerative stimulus a ()= A.e”“"added to motion equation (10.46).
sz dxs 2 _ —in[ . . _ —i
5+ 2FE +wyx (1)=Ae has solution : x (1) = Gwo (0)Ae

d 1 (10.47a)

. —imgt j
(0] - 2o+ 0))G, (@)Ae™ = Ae

SDHO equation : O

-1t
S where: G, (0,)=
0 h

2 2 .
Wy - O —21":(0S

This implies a response of the same frequency and an amplitude proportional to the stimulus. The
proportionality factor G is supposed to depend upon the stimulus frequency s, the natural frequency w,,

and damping constant I, and not on the amplitude A, of the stimulus since (10.47) is linear and (m,, T, A,) are
constant. The oscillator is a 'black box' in Fig. 10.18 with response output due to input stimuli.

Lorentz-Green's :
Response Function Stimulus
Z:ngws) as ay(t)=Ae 105t

G @9)=IGg @yl e P

Fig. 10.18 Black-box diagram of oscillator response to monochromatic stimulus

The G, isthe Lorentz response function or classical Green’s function of the stimulus frequency .
1
2

G W)=———
W, s 2 .
‘ wy-0; —2Tiw,

=ReG,, (0)+iImG,, (@)=G, (@)]e® (10.47b)

The Lorentz-Green’s function G is a constant amplitude for fixed stimulating frequency w, and natural @,, so

Xs(t) is called the steady-state stimulated response. The real and imaginary parts of the Green’s function are
the two parts of the following Cartesian form of the Green’s function G.

@ 0, 10.48 ImG,, (0))= 29, 10.48b
(3-0) +ra ) T (e ey

ReG, ()=

Then the magnitude |Gw0 (w,)| and polar angle p of the polar form of G are the following:

1 2T
| Gw() (ws) = > N (10,48(;) p= tan_l [%) (10.48d)
Jloz-az) +(2ro,) wf -0

The angle p is the response phase lag, that is, the phase angle by which the response oscillation lags
continually behind the phase (-, ) of the stimulating oscillation.

%46, @,)] Ao (@) (10.48¢)

We visualize stimulus and response phasors as a pair rigidly rotating at rate as as shown in Fig. 10.19 with
fixed response amplitude |G|A, and fixed angle p between them.
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Initial time t=0 Later ti
Imaginary ReG(w,) Response
Axis G(wy)
ImG( )
o

Stimulus’ Real Axis

Fig. 10.19 Oscillator response and stimulus phasors rotate rigidly at angular rate os.

Several views of the Lorentz Green’s function (10.48) are shown in Fig. 10.20 for a 1 Hz oscillator
with natural angular frequency @, =2m= 6-283(radian) /s and decay constant I'=0.2/s. The complex G(w,)
phasor is plotted ReGvs.ImG in Fig. 10.20a for a range (0<ws <13 ) of stimulus angular frequency (or 0<vs<2
Hz of standard frequency). In Fig. 10.20b the response R= G(w,)as due to three G-function parts ReG(w,)
, ImG(w,) (green), and | G(w,)| (gray dots) are plotted for the same range.

(a) SR (b) m0.4 Resonance
. ,|. : .g! Response
A\

Resonance Region

50.3 IR

im k74, £ e R Resonance
/-// / C t Region
: . (FWHM)

.1 -

=
—_

w(radian/sec)

02 N Uz [eSPOMSe 5 SN e Fall-Off
F-0.1 F01 _
I i Stirmihis
i A Frequency
-2 - 0z Resonance
- ST (FWHM)Region

Fig. 10.20 Anatomy of oscillator Green-Lorentz response function plots
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The response magnitude |G(w,)| is a dotted curve enveloping the others in Fig. 10.20b. It starts at
o, =0 small and fairly flat (@, << o, is called the DC response region.) and peaks near resonance point
o, =0, and falls to zero for w, >>w, (high frequency fall-off). Real part ReG(w,) dominates in the DC
region. ReG(w,) reaches a peak just shy of where it intersects the rising imaginary part InG(w,). ImG(w,)
achieves its peak value near resonance point @, = @, where ReG(w,)=0 in the center of the resonance region

between two Full Width at Half-Maximum (FWHM) points o""™ (+)=w, =T shown in Fig. 10.21. These

ofVHM (+) points are near ones that give max or min ReG(w,), half-max ImG(w,), and half-max |G(w)|-

Ratio of resonant response |G(w,)| to DC-response |G(0)| is an important number from (10.48).

_ Resonant response | Gy, (@) | _1/Qlewy) o,

AAF == = = T =o2=q
response |G o, 0] 1/ o 2r

(10.49)
This ratio is about 15 in Fig. 10.20. We will call this ratio the amplitude amplification factor (AAF) or
angular quality (q) factor of an oscillator. A Standard Quality Factor Q=vy/2I'=g/27 is more commonly
known' just as standard frequency v=w/2z is more common than angular frequancy w=2rv.

When physicists speak of a Lorentzian function they generally mean an ideal version of Lorentz
response (10.47b) with very high-Q or near-resonanto,—w, conditions W) -0l = (wo - ws)za)s :

1 1 1 B 1 1 _
wé _wSZ ~i2Tw, =20 2 w,-0,—i 20, A-il" 20,

Gy, (@)= L(A=iT) (10.50a)

A complex detuning-decay o=A-iI"variable & is defined with the real detuning A = w, — @ defined as before to
give an ideal Lorentzian L(6)=1/ 6 below. Imaginary partT / (A* +T?) is the common “real Lorentzian.” The
ideal complex Lorentzian L(6)=1/6 (10.50) is like the complex dipole function (10.42). The 1/z-plots in Fig.
10.21 are known as Smith plots and are like the dipole net in Fig. 10.11 or 10.12.

L(A—iF)zAIT:ReL viml, = —2 i T |L>A +i|LPT (10.50b)

—i A?+T?  AT4T?

cosp i sin p 1

i where: | L |= ———
JAZ+T2  JAZ+T? JAZ 412

=|L|e" =|L|cosp+i|L|sinp= (10.50c)

H_d_.-‘F'- 1"'" P _,Jr"‘x
.-"'.-- ..I ! - - - ol ....-.I B i

Fig. 10.21 Ideal Lorentzian in inverse rate space. (Smith life-time 1/I"vs. beat-period 1/4 coordinates)

T Peter W. Milonni, private communication.
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A circle of constant decay rate I"and varying detuning frequency A has a diameter of 1/"along the
vertical of the inverse frequency space in Fig. 10.21. As detuning approaches zero (perfect tuning) the polar
phase-lag angle angle p approaches 772 and the inverse detuning or beat-period1/4 approaches infinity.

There appears to be circle of constant decay rate =0.2 in Fig. 10.20, however, it cannot be a perfect
circle, particularly in the DC region around origin. Ideal Lorentzian (10.50), unlike the real one, does not have
an extended flat DC response region. Near-resonant condition o —aw, is broken if w, is allowed to go to zero.

As decay rate I"increases the 1/ circle shrinks and becomes distorted by its DC “flat” at @=0 as

shown in a rather low quality (Q=1/4)-example havingI'=2.0 and w=2r in Fig. 10.22 below. Low quality
response does not have the intersection of ReG(m,) and ImG(w,) near FWHM points of ImG(w,) or min-max
points of ReG(w,) as is nearly the case for Fig. 10.20 and exactly the case for an ideal Lorentzian.

Complex Fesponse vs. Simulus Frequency
- i e

| ]

|'.'.l'.'|'|’n'_r:-'-':.-:'l"} Fa R J N
|I|||I'|"| T ; y
ihlm Fo - ’
Bl E s (i ;

-f J S

= 1.2
1 i v [ Hartksy—
Shimulus

Fig. 10.22 Highly damped Lorentz-Green function plots with '=2.0 and w=2x.

Beats and lifetimes
Suppose at ¢ = 0 a stimulus of angular frequency ®, and amplitude a(0) is applied to a ‘cold’

oscillator (z(0)= 0). Then a sum of decaying solution (10.46b) and stimulated response (10.48d) applies.
< (t ) = Zyransient (t ) * Zpesponse (t ) = Zdecaying (t ) F Zgteady state (t )
= 4ee T 4G, (@,)a(0)e ! (10.51a)
=AM G, (@) a(0)e "1 ~7) (10.51b)

The initial condition (z(0)= 0) demands that the complex transient amplitude A be given by:
A=-|G, @)] a(0)e'? forz(0)=0 (10.51c)

Then A cancels the stimulated response at t=0. But, as time progresses, the transient amplitude z.,nsient ()

dies at rate I and the solution eventually grows up to be the steady state Z.qonse (t) alone. An example with
a resonant stimulus (o =w,=27) is shown below in Fig. 10.23(a-b). Sub-resonant stimulus (w <, ) is shown
in Fig. 10.23(c-d) and super-resonant stimulus (e <, ) is shown in Fig. 10.24(a-b).
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Stirdus: As =0.5000 =6 2832
Fesponse: B =0.195% p=1.5708

(3) FeF A Re z {h) - ERez
N | R 0.2
il ]
e Bt} Fpo
[l L
v i R
e 2(1 13 y
z i
: [ ]
-1 -2 :-D.E

Fig. 10.23 On Resonance (a)Response z-phasor lags p=90° behind stimulus F-phasor.

(ws=mp=27 and I'=0.2). (b) Time plots of Re z(t) and Re F(t)
Beat Period

Fig. 10.23 Below Resonance (c)Response z-phasor lags p=8.05° behind stimulus F-phasor.

(0s=5.03,m0=27 ,I'=0.2).  (d) Time plots of Re z(t) and Re F(t). Beats are barely visible.

The length of time it takes z(¢) to approach the steady state osCillation z.q,ons (¢) is the same as the

time it takes the transient part to die. So, after the 5% lifetime, the solution is more than 95% steady state
response. In Fig. 10.23b the transient dies after about r = 15sec. or about 15 oscillations. The angular quality
factor ¢ =15 also gives the number of oscillations needed for the transient to decay to less than 5% and
establish 95% of a resonance. Dotted outline traces of the hidden transient are shown in Fig. 10.23 and are
proportional to the outline of the plot in Fig. 10.17.
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Note that each resonant response oscillation is 1/4-period to the right of its stimulating oscillation in

Fig. 10.23b, that is, it lags by 1/4-period. That is shown more clearly by the phasor diagram in Fig. 10.23a
where the z phasor is behind the stimulus F = a(0)e "' by 90° (p=n/2). This is consistent with (10.48a)

that has real part of the response vanish at resonance (ReG(w.)=0), leaving response at ws=wq to be purely
imaginary (G, (@,)Ha(0)=ImG,, (o) ).

A stimulus frequency below resonance causes transient oscillatory beat modulation. In Fig. 10.24a-d
the angular frequency (@, =5.026 ) of stimulus and steady state response is less than that of the transient
(or =w( =21 =6.28..). So, the transient phasor Zransient turns faster than response phasor Zzss-response by
wy— o, =1.25 radian /s, and it will "2r-lap" the slower phasor every 1.25/(2n) seconds. This lap rate is
called the beat frequency vpeat=Wpeat/27 .

Vpear =[V; = Vg = /(27)=0.199s™" (10.52)
The corresponding beat period theat =1/vpeat 1S the frequency inverse.
Toea = 11]0, —0p| =27 1|0, — )| =5.01s (10.53)

A beat period of about 5 sec. is seen in Fig. 10.23d. Beats are visible until the transient decays below about
5%. Then the poor z(t) phasor has lost 95% of its faster transient part and can no longer "lap” the stimulus
F-phasor. It is left with only the steady-state response part of (10.51a) and forced to "settle down™ and lag
dutifully at angle p behind the all-powerful stimulating F-phasor.

In its "younger days" the transient phasor ztransient IS big enough that the phasor sum z(t)= ztransient
+ Zss-response SWellS Up as Ztransient Passes the stimulus F-phasor and zss-response (beat max) but then z(t)
shrinks as Ztransient §0es on to be opposite zss-response and nearly cancel it (beat min). The interference sum
z(t) experiences a beat every time Ztransient 1aps Zss response » s shown in Fig. 10.25.

However, note how much smaller the transient phasor has become just in the time it takes to make a
beat. It is "aging" at rate I" while the steady-state response-phasor zss-response IS just stuck p behind its
stimulus F-phasor according to z,=G-Fimus: S00N Z(t) falls into zgs response to stay as long as F; lasts.

Number of beats per second measures the magnitude of the relative detuning v, —vy = A, but not the
sign of A. The following example in Fig. 10.24 has the stimulus faster than resonance by |A|=0.199s~! but

with v, —v, =-0.199/s Ais the negative of (10.52). The beat number is the same but not the phase!
feal Porod

! (b)fo
N e

" '1‘\., =L,

5T |'|||_|||—|'

Fig. 10.24 Above Resonance (a)Response z-phasor lags p=170.2° behind stimulus F-phasor.
(0s=7.53,m0=27 ,I'=0.2).  (b) Time plots of Re z(t) and Re F(t) show decaying beats.
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Fig. 10.25 Beat formation. Beat maximum occurs as transient phasor ztransient catches up with F-phasor and
passes it. The next beat maximum will be smaller since ztransient is decaying.
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Comparing resonant and non-resonant cases

For the below-resonance case in Fig. 10.23c and Fig. 10.25, the response phase lag according to
(10.48d) is p =0.1405, s0 zgs response (and eventually z(t) itself) is only 8.05° behind the stimulus. For the
above-resonance case in Fig. 10.24, the response Zss response and z(t) lag behind by about 180° (p=170.2°).
This is the signature of high frequency response G(«) : it becomes nearly = out of phase with the stimulus.
In contrast the low frequency or DC response G(0) is very nearly in phase with the stimulus.

Another difference between high and low frequency response is that high frequency response goes to
zero G(0)~1/ ws 2->0 (as ws->0) and this helps explain the transparency of most materials to X-rays. Only
heavy metals have electrons whose resonant frequencies are high enough to respond significantly to X-rays.

In contrast the low frequency response approaches a constant value, namely

DC response = G(0) = 1/ ay 2. (10.54)
G(0) is just the response due to a static (DC) unit force. For high frequency oscillators, G(0) will be very
small, but if you multiply little G(0) by the big angular quality factor ( g=wy /21" is the number of oscillations
in the time needed to achieve 95% of a resonance) then the result 1/2ax I' is exactly the resonant response
amplitude G(ay). (Recall (10.49).) In other words, the DC response (10.54) is the average amplitude increase
that is achieved during each cycle of a unit resonant stimulus before the damping I really takes effect.

High-qg resonant and non-resonant cases

For very high g quality oscillators (very low I') the resonant region (ap=I) is so small that it may be
considered non-existent. Let us note that typical atomic values for the angular quality g-factor approach 108.
An atomic resonance beginning in Fig. 10.26b has a hundred million oscillations to go! Atoms and molecules
provide truly enormous resonant amplification factors!

In classical Hamiltonian systems we deal with this limiting case exclusively since damping is zero by
definition. For infinite g there are really only two values for the response phase lag angle: in-phase (p=0) and
out-of-phase (p=r). The out-of-phase (p=r) occurs above resonance (ws >ay) as shown in Fig. 10.26a. The
in-phase (p=0) case occurs below resonance (as <ax) as shown in Fig. 10.26c. Exactly at resonance where
(s =) the steady state response and the transient are both infinite and opposite so they cancel each other,
and the z(t) builds up forever as shown in Fig. 10.26b. Each cycle of revolution adds another bit of amplitude
equal to the DC response (10.54) just as we explained above.

Fig. 10.26 Zero damping response (wp=27r ,I =0) (Next page)
(a) Above resonance (ws=6.91)

(b) Resonance (ws=6.28) (Stimulus amplitude reduced to show response.)
(c) Below resonance (ws=5.65)
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Appendix 1.A Vector product geometry
Vectors have relative projections onto each other. Components X, y, or z are projections of r onto unit i, j,

and k. Power Fev =Fvcose is a dot product cosine projection of F on v. Coriolis a=| ® x v |=wvsineis a sine-

like transverse projection called the cross product. Product AeB (or |[AxB]) is cosine (or sine) of a relative
angle (6g-6,) times length factor AB as drawn in Fig. 1.A.1.
The cosine or dot-projection may be given in Cartesian lab components (Ax=Acosga) Aj=Asinga).
A B=ABcos(¢p — s )= AcossBcosdp + Asin ¢y Bsingg =A By + A, B, (1.A.1a)
The sine or cross-projection has a somewhat different or “crossed-up” form.
AX B = ABsin(pp — ¢4 ) = A cos ¢ B sin ¢gg — A sin ¢4 B cos g = A B, — A,B, (1.A.1b)
(a) Lab-relative (b) A-relative A-longitudinal (c) B-relative

component of B

BpzBcos(6p=04) B-longitudinal

B,=Bcos Op component of A B
—9A Apg=Acos(0g—0,)
BBy 0, AB /o e
0| =Bsin Op B Ap
A ] Ay:Asin 0,
A - _
A, =Acos 6, A*B=A'Bp=ABcos(03—0,)  BeA=B-Ap=B-Acos(6z—6,)=AsB

A B=4'By =A'Bsin(63—6,) B A=B-Ap =-B-Asin(6z—0,)=-A B

Fig. 1.A.1 Vector component geometry (a) Lab-relative. (b) A-relative. (c) B-relative.

Here A«B and AxB are numbers or scalars. Full AxB definition ((1.A.4b) below) is a vector perpendicular to
both A and B. (In Fig. 1.A.1, it would stick out of the page.) Also it happens that AxB is the area of the
vector parallelogram and Y/,AxB is the area of the A+B or A-B triangle as shown in Fig. 1.A.2.

In Fig. 1.A.1b vector B refers to axes made of vector A and its perpendicular copy A, and vice-versa
in Fig. 1.A.1(c). Dot products are reflexive (A*B = BeA), but cross products must be anti-reflexive (AxB =-
BxA) since the B_ vector is in a negative direction relative to Aiin Fig. 1.A.1(c). One way to display the
relation between the pair (A, A.) and the pair (B, B_,) is in a rotation matrix.

(AB Ag, j=[cos03A —sin@BAjz(BA B J_lz(cosem sinf g4 ]_l (1LA2)
Adp Adp, sinfgy  cosOpy Bdsy Bdag —sinfpgs cosOpy o
Algebraic definitions of AeB and AxB are based on the symmetric Kronecker function ; and the
totally anti-symmetric Levi-Civita function gy defined as follows.
o +1 if {ijjk} is EVEN permutation of {123},
5 =5 = {1 1=/ 1A32) e*=¢ =|-1if{jk}is ODD permutation of {123}, (LA.3a)

T 0 i o _
J 0 otherwise.

These are fundamental to tensor analysis and exterior calculus that will be introduced in Unit 3. They also
define scalar A«B and vector AxB products in useful ways for fast computer logic, as follows.
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3 3 3 3 3 3 3
A+B=)>5AB =3 AB (LA4) (AxB) =Y Ye,AB =Y Ye AB  (1LA4D)
i=1 et £ .

i=1 j=1

I
—_
~
1l
I
—_
~
I

The notation C,=(C), denotes the k™ component of a vector C.
Determinants and triple products
Levi-Civita sums define the determinant detU of a matrix U;. An expansion by minors is shown here.
u, U, U,
detU=\U, U, U,|=>¢e,UUU,=U,
u, U, U, "

A triple vector product AxBeC is such a determinant made from a matrix of three vector components.

U22 U23 U

U32 U33

U21 U23
U3 1 U33

U21

U

22

+U

13

(1.A5)

Y1

31 32

A4 A B B B B B
— — _ 2 3 1 3 1 2
A*BxC=|B, B, B|=Y¢,ABC =A c ol e cIFAle o (1.A.63)
cC C. C ij.k 2 3 1 3 1 2
1 2 3
= A,(BXC) +A,(BxC) +A,(BxC), (1.A.6b)

Minor expansion (1.A.5) is a (*)-product of A with (x )-product vector BxC. Base area |BxC| times altitude
(A projected onto normal BxC) equals the parallelepiped volume enclosed by A, B, and C.

Anti-symmetric e-forms let us generalize geometry from 2-and 3-dimensions to N-dimensions.
Advanced mechanics has many dimensions. One mole (6-10% particles) has at least 6-10% dimensions and

two or three times that if the atoms move in 2D or 3D. So e-forms are necessary!

Products of anti-symmetric e-forms reduce to symmetric 6-forms by a LeviCivita identity.
3 3
Zeﬁksmk =4,0,-6,0,, = Zekﬁem (1.A7)
k=1 k=1
A triple-cross-product formula Ax (BxC)=(AeC)B— (A eB)C is a first application.

3 3 3
(Ax(BxC)) =>e,ABXC), = Y €6, ABC =) (5,5,-65,)ABC,
J.k

J.k,m,n j.m,n

:iAnBiCn— 3 A,B,C.=(AeC)(B) —(AeB)(C)

m

The LC-identity (1.A.7) reduces each sum over k to dot-product terms.

A A Area=base-altitude A Area='/, base-altitude A A-
TR Sl ¥ Sl i g
B A B = |AxB]| = =1/ |AXB| B

Fig. 1.A.2 Cross-product and area of (a)-(b) Parallelogram, (c) Sum triangle, (d) Difference triangle.
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