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Slope &Velocity (1-and-2-particles)
Momentum (1-and-2-particles)
   Superball missiles
   Rocket science & pileups
Kinetic Energy
Potential Energy
Force & PE Fields
1D, 2D, & 3D oscillators

Friction

Velocity-velocity plots
Space-time and space-space
Energy shell (ellipse)
Matrix rotation & reflection
F versus space work plots
PE versus space
Phase space

Ways to visualizeConcepts and Effects

Multi-velocity contours

Road Map for Physics by Geometry  (2008)-version

Newton-Hamilton Classical  World
(Think Bang-Bang particles ! Waves are Illusory.)

Maxwell-Lorentz View of Classical and Quantum Worlds
(Think resonance!  Nature works by persuasion.)

Space-Time by Wave Interference
Doppler shifts tell all

Energy Momentum Dispersion
Matter waves vs. No-Matter waves
What is matter?

 complaints
Waves in accelerated frames
Waves in nano-structures
Spin and quantum angular momentum

Bose vs. Fermi

Einstein-Planck Relativity-Quantum World
(Think waves!  Particles are Illusory.)

Vibration and beats
Action and phase

Hysteresis
1-Particle resonance
2-Particle resonance
n-Particle resonance (Waves)
Wave dispersion
       Phase & group velocity

Phasors

F versus time & work plots
Lorentzian functions & Smith charts
U(2) space & Stokes quasi-spin
Multiple phasors
Frequency vs. wavevector plots

Momentum versus coordinate plot

Minkowski Spacetime graph
Hyperbolic geometry

Epstein x-proper time graph

Dispersion graphs
Wavevector geometry
Angular momentum cones

RE surfaces

The U(2) spinor slide rule

Unit 1:

Unit 2:

Unit 3:
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Introduction
The triangle explosion
We are in an explosion of science and it starts with a triangle.

It has all been in a historical instant of a few hundred or a couple of thousand years. That is an eye-

blink in human history and a lightning-flash in geological time. European Renaissance and Enlightenment

periods are even more recent, just about 400 or 500 years ago.

There is an embarrassing 1500 years of time-out for the Middle Ages, but our story begins with

Babylonian and Greek civilizations and the first recorded mathematical science including geometry of

Pythagoras (~500BC) and Euclid (~300BC). Little evidence exists for higher math and science before that.

The 1500-year interruption after the burning of the libraries of Alexandria was a resumption of human

business-as-usual, that is, fear, superstition, and feudal government by warlords. Thinking for yourself was

an activity that was likely to get you “fired” and that didn’t mean just a pink slip!

You and your books got burned, literally.

During the European time-out the Middle Eastern and Arabic cultures flourished. They studied things

saved from Babylonian and Greek geometry and made the first recorded development of algebra. Sadly, the

Arabic cultures resumed business-as-usual just before Europe began its renaissance. Since then the Middle

East remains in an unreasonable condition we see it today.

Also, during the European time-out, repositories of Babylonian and Greek culture were studied in

monasteries of various Catholic sects. One notable scholarly monk is William of Ockham (~1285-1349) now

known for Occam’s razor. He wrote, “Pluralitas non est ponenda sine neccesitate” (Plurality should not be

assumed without necessity). It’s good advice.

Occam might be paraphrased, “Keep it simple and make it powerful!” It’s a logical idea of geometry

and, indeed one may argue, of all science, mathematical or otherwise. It asks to begin a study of anything by

first and finally collecting the smallest set of axioms that one needs to proceed.

Occam’s razor is supposed find ways to cut down any axiom set or sine qua non (without which

there is nothing). It is amazing that such a “cutting” idea actually works! Perhaps, by reducing logical clutter

we hack away unknowns and clear the way for new stuff. But, there is more to it than that.

By allowing thought to be driven by a need to undermine its premises, one is following a thought path

that grows geometrically. An exponential explosion of science and mathematics results. Of course, Occam’s

idea was heresy and he was nearly “fired.” Copernicus, Galileo, Bruno (who was burned at the stake), and

others followed similar thought progression. Hacking sacred Churchly axioms or mythos is always trouble.

Occam says, “Hack the axioms to save man.” The Church says, “Hack the man to save axioms.”
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Logos vs. mythos
The battle between logos and mythos may be seen as a battle between portions of the human brain. An

evolution through millions of years is seen in a magnetic resonance image (MRI) that shows the lower limbic

(picean, reptilian, mammalian) lobes (LLL) below higher cerebral lobes (HCL). Little in the higher brain is

fully functional at birth while the LLL “boots from the box.”

In fact, getting HCL up and running is at least a 20-year process called education and often a painful

one. Most of our feelings of comfort and love are stimulated by the unconscious LLL and that goes double for

feelings of fear, hatred and anger. The latter had proportionally greater survival value during countless

millennia of animal and human evolution. Failure to educate ends in synaptic mylenination, an atrophy of

unused HCL circuits. This is not good in school but just fine working for a local warlord.

Knowing a little history and physiology helps to understand how anger is generated by scientific

reasoning in spite of reason’s obvious gifts. One understands an angry Martin Luther blurting, “That fool,

Copernicus…” and sees why they forced Galileo to recant his logic and observations. Luther may have

expressed it as succinctly as possible. His LLL explaterated the following in The Lies of the Jews (1433).

“Die verfluchte hure, vernunft.”  (That damned whore, reason.)

So, childish make-believe is just human business-as-usual as Al Gore, 2007 Peace Nobelist, explains in

Assualt on Reason (2005). Chris Mooney’s Republican War on Science (2004) adds further details.

Science priests
To win any “war” for scientific reason it is necessary to empower more thinking people with effective

educational tools. This is something that scientists have largely failed to do. It is much easier to behave like a

priest and say, “Trust me.” Many popular theoretical physics books leave readers more mystified than

educated and more discouraged than enlightened. Quite a few textbooks suffer similarly.

What s the difference
This book is different since it is a geometric approach to physics that allows you practice it starting

with just a ruler & compass. (See Weapons of Math Instruction on the following pages.) Most important, is

how this lets you check the math. Modern theory is great but it is always the source and development of

ideas that is the most important idea of all. Ideas wax and wan. Idea development is a forever thing.

We will begin with ruler & compass reconstructions of car crashes to show symmetry principles that

are key to classical mechanics. Symmetry principles, which I call grown-up-geometry provide doorways from

classical mechanics to quantum mechanics, the currently reigning theory of our world. We use thought

experiments and classical analogy to understand quantum and relativistic reality.

So we start by understanding car-crashes and work up to understanding photon-crashes.
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 The weapons of math instruction
When you’ve got a tough job you use all the tools you can find. We use tools listed below. (See

Figure.) Each has advantages and disadvantages. There’s no magic do-all “Swiss-Army knife” for physics.

Toolbox 1: Euclidian plane geometry (Rule and compass)

Note that Toolbox 1 has a rule not the ruler. That’s in Toolbox 2. A rule is just a straightedge, a ruler

without its inch or mm scale. Euclid’s pretty strict about this. Formal plane geometry is kind of a game to see

how much you can do drawing lines and circles with just these tools. And a pencil…did I forget the pencil?

With an eraser, too. Very useful!

Toolbox 1 has limitations, at least by the formal rules of Mr. Euclid. You may have heard that you

can’t trisect an angle as Mr. Euclid wants it done, formally and exactly in a finite number of steps. When

necessary, we’ll do this and other “illegal” moves approximately and in a finite number of steps.

Toolbox 2: Navigational geometry (Set 1+ protractor, ruler, divider, parallel rule)

These were the tools used by the Portuguese, Spanish, Dutch, French, and English navigators who

were at least indirectly responsible for many of us living in the American continent. These tools were also

used by weekend sailors until the Global Positioning System made all but a six-pack obsolete.

Toolbox 3: Analytic geometry (Set 2+ graph paper, algebra, calculus, calculator)

The idea is not to discard algebra and other such formalisms but to understand them better. So one of

the first things we do with each geometric graph is figure it out using algebra. This is called analytic geometry

and is one of the quickest ways to understand calculus and its application to physics. This leads to complex

algebra and geometry that is very important to physics. As a crutch for the arithmetically and algebraically

challenged we include scientific calculators. (Most of these have complex algebra capability.)

Toolbox 4: Computer geometry (Set 3+ high resolution graphics, C++  etc.)

This is the “open” class of geometric analysis, and anything goes. A modern scientist without

graphics programming is at a disadvantage. Current languages of greatest general usage, speed, and power are

C++ and Objective C used to write simulations BounceIt, BandIt, etc. for this book. High-level languages such as

Maple™, Mathematica™ are fine, too, though often they are jacks-of-all-trades and masters-of-few.

Toolbox 5: You

This is challenging stuff. Doing it will seem hard sometimes. Rome was not built in a day and neither

was any understanding of Nature. So this book depends most on how much you like thinking and doing.

Ignorance about science is not a burden you must accept. It is a challenge you should overcome.
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(a) Toolbox 1. Euclidian Geometry

(b) Toolbox 2. Navigational Geometry
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Sketch of book units
Unit 1 introduces classical mechanics of momentum and energy by geometry and symmetry while previewing

subjects to come. Geometric approaches are direct and powerful so effects like super-elastic bounce and

supernoval explosion can be analyzed by car-crash “slide-rules.” We introduce potential energy by oscillator

and Coulomb models of Earth inside and out and construct elliptic orbits of a “neutron-starlet” by ruler &

compass. The ellipse geometry then leads to an elegant development of resonance and beats in Unit 2, that is,

in turn, a precursor to understanding relativity and quantum waves in Unit 3.

An ancient war machine called the trebuchet or ingenium is discussed near the end of Unit 1. The

trebuchet is a super-catapult used between 3000 BC in China and 1500 AD that duplicates the human

motions of throwing, reaping, chopping, and digging that built our culture. It also instructively models the

motions used in modern sports of baseball, tennis, and golf while showing how one may improve one’s swing

in any such sport (and ring the bell at the fair!)

Unit 2 introduces the concept of resonance, an alternative view of nature to the brutish bashing of

particles seen in Unit 1. As we learn about fundamental processes it appears that Nature uses persuasion or

resonance rather than so many punches. The concept of the oscillator phase and phasor-clock is introduced

along with the mechanics of wave motion. The geometry of phasor clocks is used to introduce complex

Fourier analysis discretely. Geometry again provides inside views of concepts often left unseen.

Unit 3 begins with light, a most common wave but most difficult to observe. Ancient geometry and

Occam’s razor are used on Einstein’s postulate of light speed c. There results a new way to see relativity and

quantum mechanics as one subject and dispel many mysteries about them. Optical Doppler frequency shift is

seen to be a primary geometric source of relativistic quantum effects ranging from Lorentz transformation of

spacetime to Compton scattering to the existence of mass-energy and classical Newtonian mechanics of Unit

1. A classical Newtonian mechanic might say, “Think particles. Waves are illusory.” A quantum mechanic should

reply, “Think waves. Particles are illusory.” Pluralitas non est ponenda sine neccesitate.

Some related books
This book is most in line with works that many regard as outside the mainstream including Quantum

Electrodynamics by Feynman, The Feynman Lectures by Feynman, Leighton, and Sands, The Berkeley Series

on Physics 3. Wave Mechanics by Frank Crawford, Mechanics by Landau and Lifshitz, and Classical

Mechanics by Arnold. Hawkings “God Created the Integers” and Penrose’s “Road to Reality” are among

recent additions to a list of readable books with depth.

William G. Harter
Fayetteville, Arkansas
January 2008
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Unit 1

Newton-Hamilton Classical Mechanics

v1

v2

p2

p1

v v = pH

p = vL

p

L=const

H=const

tangent
at v

tangent
          at p

normal
at v

normal
at p

W. G. Harter

Basic ideas of velocity, momentum, and kinetic energy (KE) are reviewed using geometry of

collision experiments between pairs of masses and extending it to many. Basic ideas of

potential energy (PE) and force are introduced by defining PE as the KE of one or two balls

that provides a force field for others. The two most famous PE functions, those of Coulomb

and of a harmonic oscillator and linear (Hooke s Law) force are introduced. The elliptic orbits of

the latter are reviewed in considerable geometric detail. This helps to clarify the basic axioms

of classical mechanics.
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Chapter 1. Velocity, slope geometry, and trigonometry

A 4-ton SUV going 60mph approaches a 1-ton VW going 10mph. (Fig. 1.1a.) The SUV driver is busy

text-messaging on a cell-fax instead of watching the road ahead.

Ka-runch! The SUV rear-ends the VW. (Fig. 1.1b.)    What happens then?

Well, both vehicles suddenly change speed. Our job is to figure out those speed changes. (See question

marks in Fig. 1.1c.) The answers that we find later will depend upon whether the collision is a “ka-runch!”

or a “ka-bong!” or (more likely) an intermediate “ka-whump!” as discussed shortly.

0-0.2-0.4-0.6-0.8-1

-6 sec.

-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile
1 

m
in

ut
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( 
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(a) Before collision...                      (b) Collision!          (c) After collision?

�������
�

����
���

�������
�

����
���

� �

� �

Extreme inelastic case

Extreme elastic case

Fig. 1.1 Time vs. space graphs of (a) SUV (going 60mph) and VW (going10mph), (b) collision, and (c)

possible outcomes of two extreme cases: the inelastic “ka-runch!” and perfectly elastic “ka-bong!”

Our job is a lot easier than what first-responders, doctors, lawyers, insurance agents, ministers, or

psychologists do to deal with results of such speed changes. Such difficult human problems are quite beyond

our scope here. Also, I can’t say why so many people “need” n-ton SUV’s, but I do know you can get

$100,000 off 2007 taxable income by buying an SUV provided it weighs over 6 (six) tons!

My hope is that graphical analysis of physics and economics may help avoid injury due to either one.

Graphs ought to give quantitative results while helping to expose logic. Our first graph (Fig. 1a) is a time vs.

distance plot. It shows speed by slope-from-vertical. It has been used for space-time relativity since Herman

Minkowski, one of Einstein’s math profs, suggested it. Calculus texts use a distance vs. time plot to show

speed by slope-from-horizontal as Newton liked to do. Fig. 1.2 compares the two. They both use a 1:1 ratio

(45°slope=1/1) to represent 60 mph = 1 mile/min. in (a) but also 1 min./mile in (b).
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-24
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t=time
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-12

-18
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-24

-30 sec.

30 sec.t=time=

x=distance

(a) Time vs. space plot (Minkowski)    (b)Space vs. time  plot (Newton)

Jet velocity = 600 mph
( slope-to-horizon: 1 / 10 )

SUV velocity = 60 mph
( slope-to-horizon:  1 / 1  )

VW velocity = 10 mph
( slope-to-horizon:  6 / 1  )

Jet velocity = 600 mph
( slope-to-horizon: 10 / 1 )

SUV velocity = 60 mph
( slope-to-horizon:  1 / 1  )

VW velocity = 10 mph
( slope-to-horizon:  1 / 6  )

10

1
6

1

61

101

6

slope-to-horizon
      =a/b

a=altitude

b=base

Fig. 1.2 Comparing slope  (a) Minkowski time vs. space plots vs. (b) Newton’s space vs. time plots.

The two plots (a) and (b) are equivalent; (a) is transformed into (b) by doing a mirror-reflection across

the 45° diagonal (1:1)-SUV-line, the one line that is the same in (a) or (b). I prefer (a) for vehicular dynamics

since cars usually go horizontally. (With (b) you might ask, “How do cars climb walls?”)

Now, slope is defined as the ratio y/ x of vertical altitude y per horizontal base x. This equals

velocity v= x/ t for a horizontal time-t-axis and vertical space-x-axis like Fig. 1.2b. So horizontal x-axis and

vertical time-t-axis of Fig. 1.2a has slope= t/ x=1/v inverse to Fig. 1.2b slope. The lowest slope=1/10 in Fig.

1.2a belongs to jet velocity v=600mph that is the highest slope=10/1 in Fig. 1.2b, and a low VW velocity of

v=10mph has a triangle of steep slope=6/1 in Fig. 1.2a but in Fig. 1.2b that VW line is a low slope=1/6.

Each unit graph square in Fig. 1.2a has a horizontal scale factor of sx=0.1mile(per square) and a

vertical scale factor of sy=6sec.(per square) and vice versa for Fig. 1.2b. If you multiply scale sx by factor fx

and sy by fy then each graph slope 
 x

y =(ny vert. squares)/(nx horiz. squares) changes to (fx/fy) x

y .
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                        Right-handed Cartesian coordinates

Rene Descartes (1596-1650) is said to have invented (or discovered) the Cartesian
graph and coordinate system. We usually call the two-dimensional (2D) version “XY-
coordinates” and three-dimensional (3D) versions are “XYZ-coordinates.”

Four-dimensional (4D) space-time (xyzt)-Minkowski coordinates after Herman
Minkowski (who was Einstein’s math professor)†came later (1905-1908). The 2D
projection of one space dimension (x or y or z) and time scale-by-lightspeed (ct) is
called a Minkowski graph. Lightspeed c=2.99792458 m/s has velocity units so ct has
distance units like x or y or z.

Two-dimensional (2D) XY-graphs often draw the primary X or x-axis along the
horizontal direction with x increasing to the right, and then place the secondary Y or
y-axis perpendicular or normal to the X-axis with y increasing vertically.

What (or which) physics variables should be “primary?” Well, that’s up to you.
The choice between Minkowski(a) and Newton(b) in Fig. 1.2 is a matter of taste.

Y

O X
-1.0 -0.5 0.5 1.0

-0.5

-1.0

P = (0.8,0.7)
Q = (-0.6,0.4)

R = (-0.9,-0.3)
S = (0.5,-0.2)

1st quadrant2nd quadrant

3rd quadrant 4th quadrant

Y

X

1.0

0.0
0.0

1.0
Z

The graph above is called a right-handed coordinate system since it points like
your thumb (X) and forefinger (Y) of your right hand as you extend to shake hands or
hand someone a plate of escargot. (Descartes’ French cuisine is respected here.)

A toothpick sticking up from the escargot points in the Z or z-axis direction of a
right-handed 3D Cartesian coordinate system as shown below.

x-axis

y-axis

z-axis z-axis

† Minkowski (who was Polish) told Einstein (who was Swiss) that he was a “fat lazy boy.” Einstein
never used Minkowski graphs. It is sad story since Herman’s graphs could help many more to visualize
relativity and expose its geometric structure. We will certainly not repeat that sad mistake!

A. Einstein, Annalen der Physik 17, 891(1905).
H. Minkowski, Mathematisch-Physikalische Klasse, vol. 1, 53 (1908).
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We do rescaling of dimensions whenever we change units. For example, changing miles to feet in Fig.

1.2a uses factor fx =5,280 ft. per mile (or 
  mile
ft. ) and changing minutes to seconds uses fy =60

 min.

sec . The scale ratio

(fx/fy) is 88, that is, 60mph equals 88 
  sec .
ft. . SUV slope of 1 in Fig. 1.2b is 88 in a ft. vs. sec. plot. That’s too high

to plot 60mph accurately but a ft. vs. sec. or ft. vs. min. plot will be more appropriate for parking lot speeds.

Change and delta variables

The delta notation, such as x, v, t, and so forth, is confusing to one who has

not had a calculus course (or has forgotten that stuff). Roughly speaking, the Greek

upper case “D” or delta ( ) stands for “difference” or differential, and x should be

read as “change of x” or differential of x and thought of as a single entity.

It is a common mistake to read  x as “  multiplied by x” or “  times x ” since,

after all, product p of quantities a and x is written p=ax or better p=a·x. Instead, the

mathematical cognescenti think of  as an operation that acts on a variable x or

whatever to give whatever change has occurred in that variable.

When the letter  is used to denote an actual number or variable one should take

care to write its product with another variable x as ·x or (better) x·  to avoid

confusing it with x.

Slope and delta ratios

Slope ratio y/ x of a line or of a triangular hypotenuse is a key concept that is

common to mathematics and physics beginning with Babylonian and Greek plane
geometry of Euclid (300 BCE), and progressing through analytic geometry of
Descartes (1620), the complex trigonometry of Euler (1700), the calculus of Newton
(1720), the relativity of Einstein (1905), and the quantum mechanics of Planck
(1900), Bohr (1920), Schrodinger (1925), and Dirac (1930). (That’s a short list. A full
one could take pages.) Physics uses slope like soup uses water. It’s all based on slope
and related triangular angles, areas, and ratios. We must study slope!

So far we have only talked about slope of straight lines in Fig. 1.1-2. For them

triangle size or location makes no difference to ratio y/ x. All triangles in the figure

(a) below are similar triangles, but triangles hanging on a curve in figure (b) are not.

(a) (b)

Δx

Δy

slopes Δy/Δx
are equal

slopes Δy/Δx
are not equal

tangent line at x

Slope of a triangle hanging on a curve depends on location  x and base segment size x.

Soon we will define slope of a tangent line to a curve in (b) by making its base

segment x so small that the curve over it looks straight as in (a). Then (to graph

accuracy) the tangent slope will only depend on location x on the curve.
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Slope angles and ratios

Most of us learn to measure slope by degrees(°) of a slope angle . Greek “s” or sigma  stands for

sector slope. (We also use theta ( ) or phi ( ).) But, degrees are an arbitrary choice of 180° per (1/2)-turn or

360° per full turn. A better unit is 1 radian=180/ ~57.3°. A =1radian-sector on unit circle (r=1) (Fig. 1.3a)

has unit arc-length ( = ·r=1) and unit sector area (A= ·r
2=1) based on =3.14159…, not arbitrary numbers.

σ =1
radian

radius
r =1

Arc
length

� = r σ =1

(1/2)r2 σ+(1/2)r2 σ =1
Total Sector Area

r2 σ =1

(a) Unit angle σ =1 radian

σ
radian

radius
r =1

Arc
length

� = r σ 

(1/2)r2 σ+(1/2)r2 σ 

Total Sector Area
r2 σ 

(b) 1/4-circle angle σ 

Fig. 1.3 (a) Definition of unit angle (  =1) on unit circle (r =1) (b) A quarter turn sweeps half the area.

The trick here is that the sector slope line sweeps out two pieces of the pie to make a whole pie or

area pi=  if angle  is  or 180° The 1/4-circle angle = /2 in Fig. 1.3b sweeps area r2/2= /2 of half a pie. It

may not be how you serve pie, but it is how mathematicians serve . (There (or their) pie (or pi) are square!)

Actual slope is the tangent of angle  written tan  and so called since it is the length of a line tangent

to or “touching” a unit circle from angle  to x-axis. (See Fig. 1.4b.) Another triangular ratio is the sine or sin

that stands (I think) for “slope over incline” or some such. While tangent in Fig. 1.4 is an a:b ratio

(
  base
altitude

=
b
a
=

x
y
= tan ), the sine is an a:r ratio (

  radius
altitude

=
r
a
=

r
y
= sin ) that civil engineers use to “grade” roads.

             percent-grade=100·(altitude y gained)/(distance r traveled) =100 sin 

High grades are good in school but bad for roads. An interstate highway would “flunk” anywhere its grade

was above 5%. This changed in 2001 with the Bush administration’s “No Road Left Behind” policy.

Each triangle ratio switches places with its codependent ratio if you switch x-and-y-axes (or altitude-

and-base) or switch Fig. 1.2a Minkowski plots to Fig. 1.2b Newton plots. For example, a cotangent ratio

  altitude
base

=
a
b
=

y
x
= cot is codependent to tan , and cosine ratio 

  radius

base
=

r

b
=

r

x
= cos  is codependent to sin .

In comparing (a) vs. (b) in Fig. 1.2 we saw that a slope (like 6/1) in (a) is inverse slope (1/6) in (b).

(That was for the 10mph VW.) In other words, any slope 
  b
a
= tan in (a) becomes 

  a
b
= cot = 1 / tan  in (b).

Also any slope angle  in (a) becomes a compliment
  c

=
2

 to angle  in (b). (See Fig. 1.4a.)
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From the two preceding paragraphs we deduce that any ratio like sin  or tan  for angle  must equal

its co-ratio for the compliment c= /2 , and vice versa.

  
sin = cos

c
 ,      sin

c
= cos  ,      tan = cot

c
=1/ tan

c
 ,     tan

c
= cot =1/ tan   

Two other ratios use secant (or “sword-like”) lines that pierce the circle in Fig. 1.4b. The horizontal line is a

secant ratio 
  base

radius
=

b

r
=

x

r
= sec = 1 / cos  and its co-ratio is a cosecant ratio 

  altitude
radius

=
a
r
=

y
r
= csc = 1 / sin .

     radius and
  hypotenuse

a2+b2

b=base

a=
altitudeσ

σc=        − σ

σ =1

r =1

(b)  Slope ratios for σ =1

base   =rcosσ=0.5403

tangent=r tanσ=1.5574

σ

σ

secant =r secσ=1.8508

co-tangent
=r cotσ=0.6421

co-secant
=r cscσ=1.1884

σ

r =1

(c)...for σ 

base=rcosσ=0

altitude=r sinσ=1

tangent=r tanσ
σ

secant=r secσ

co-tangent
=r cotσ=0

co-secant
=r cscσ=1

(a) Triangle with
slope angle σ =1

= compliment to slope angle

σc

σc altitude=r sinσ=0.8415

σ

π
2 σc

π
2

π
2

r =1

Fig. 1.4 (a) Right triangle geometry for =1 slope (b) Triangle ratios for =1 and (c) = /2.

Fig. 1.4b has eight different but similar triangles with the same angles ( , /2, c) as the triangle in Fig.

1.4a. Can you spot them? Whether big or small, similar triangles share ratios (sine, cosine, or tangent) if (and

only if) they share angles. To do geometry problems we look for “hidden” similar triangles and hidden right

triangles that form similar rectangles. Right triangles have relation a2+b2=r2 of Pythagoras (~570 BC).

One secret is to visualize sequences of scale change or rotation transformation as in Fig. 1.5 where

each rectangle is rotated by 90° and shrunk by a factor cot =64.2%. Rectangle diagonals in Fig. 1.5a (and

sides in Fig. 1.5b) give a power sequence (…tan1 ,tan0
=1,(tan )

-1=cot1 ,(tan )
-2=cot2 ,(tan )

-3=cot3 ,…).

A power sequence is also called a geometric sequence since it is suggested by geometry. A rectangle

sequence in Fig. 1.5a is lined up with the XY coordinates of the page, that is, each side has zero or infinite

slope but the first diagonal (tan ) has a negative slope angle of - c = –1-radian or –57.3°. The sequence in Fig.

1.5b begins with a rectangle side (tan ) at angle –57.3°. Each sequential rotation in either figure is 90°

clockwise around the original tangent point with rectangle size shrunk by factor cot =64.21% each time.
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(a) Rectangle diagonal sequence
                  {...tanσ,1,cotσ,cot2σ,cot3σ,...}

tanσ

1

cotσ
cot2σ

cot3σ

(b) Rectangle side sequence
                  {...tanσ,1,cotσ,cot2σ,cot3σ,...}

tanσ
1

cotσ

cot2σ

cot3σ

Fig. 1.5 Geometric cot =0.6241 sequences of whirling rectangle segments based on slope angle =1.

Exercises for study of slope and trigonometry

1. Construct whirling square diagrams for 60° slope angle = /3 without using protractor. First compare the

precision of graph-derived values of sin ,  cos , tan , etc. with algebraic and/or calculator-derived numbers.

Solution Hints:

Only certain angles have exact Euclid rule&compass construction and =60° is one of them. (But,  =1 isn’t!)

If you could “straighten” the ( =1)-arc of a ( =1)-sector (Fig. 1.3a) to one (r=1)-side of an equilateral triangle,

its slope angle would grow from =1=57.3° to = /3=60° as shown in Fig. 1.6b.

To construct a 60° slope a  la Euclid, draw a radius-(r=1) circle by compass and use the same radius-r

setting to strike an arc from X point-(x=1,y=0) to locate R as in Fig. 1.6b. So now, theoretically, arc-RX is

= /3=1.0472…long approximately but line-RX has length-(r=1) exactly. At 2-figure precision both have

length 1.0, but at 3-figure precision, arc-RX length is 1.05, 5% greater than line-RX length 1.00.

Whether a math or physics theory is “correct” or not depends on our level of precision. As we will

see, it is pretty tough to get level-3 absolute precision (1 part in 1,000) with ruler and compass construction

but level-2 is pretty easy. By taping fishing line onto arc-RX, we can see that it is about 5% shorter than a

unit line, but measuring 4.7% is challenging and 4.72% requires tools most don’t have.

We easily get level-9 precision by poking sin( /3) into a calculator (or sin60° if set for degrees)  to get

sin( /3)=0.866025403…. but only can estimate 0.86 or 0.87 in Fig. 1.6b graph as indicated by ??? marks.

To construct the tangent declination by compliment angle c= /2- /3= /6 (or 90°-60°=30°) we strike a

unit arc off the –Y point to intersection point Q on the 4th quadrant-YQX of unit circle in Fig. 1.6c. The line

OQ thru point Q is perpendicular or normal to original slope line OR since c+  is /2(90°) for any .

This line OQ drawn thru point R is the tangent decline we need for this problem. Just redo arc inter-

sector -YQO to make sector NPR centered at R instead of O. Then draw tangent line PR so it extends down to

secant point S on the X axis and up along the cotangent line to the cosecant point on the Y axis.
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Arc length
� = r σ=π/3

XO X

R
Y

radius
r =1

O

X

RY

radius
r =1

-Y

O

Q

radius
r =1

base   =rcos    =0.5000 π

 3

altitude=r sin     =0.8664 π

 3

r=1

b=1/2

X

Y

σ=π/3 S

???

???

???

???

Q

P

tangent=r tan     =1.732 π

 3 ???

secant =r sec     =2.0000

r cot    =0.5774 π

 3 ???
r csc     =1.1547

σ=π/3

 π

 3

 π

 3 ???
σc=π/6 

(c) Tangent declination σc=           (d) Secants etc.

(a) Unit circle (b) Tangent slope σ=       π

 3

σc

σ

σc

σ=

σc=

 π

 6
R???

Y

N

-Y

-X

Fig. 1.6 Details of a geometric construction of Fig. 1.5 for slope angle = /3 (60°)

Segments OS and YR provide numerical estimates of calculated values sec( /3)=2.000 and csc( /3) =1.155

along X and Y axes, respectively, in Fig. 1.6d. The value sec( /3)=2 like its inverse cos( /3)=1/2 is exactly

rational, a nice feature of a (30°,60°,90°)-triangle with side ratios (b:a:r)=(1: 3:2) (It is a right triangle, so:

a2+b2=r2.) The “30-60” is a famous right triangle students must learn. Others are “3-4-5” ((a:b:r)=(3:4:5)) and

the “45” ( (45°,45°,90°)or(a:b:r)=(1:1: 2)). A “Golden” ratio 
  
G =

2
1 (1+ 5)  triangle is very cool (and rich).

Arc functions

So far we give an angle or unit-circle arc  and construct or calculate trigonometric functions of 

including a=sin , b=cos , t=tan , 1/a=csc  or their co-functions. Now consider the reverse or inverse case:

we are given a, or b, or t etc. and must come up with an arc  (or arcs 1, 2...) that gives a, etc. To do this we

find arc-functions arc-sine, arc-cosine… or inverse trig functions sin
-1, cos

-1…as follows.

 =arcsin(a)=sin-1(a),  =arccos(b)=cos-1(b),  =arctan(t)=tan-1(t),…
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The exponential (-1)-notation seems to confuse sin-1(a) with (sin(a))-1=1/(sin(a)) that we do not want here.

(However, it is conventional to write (sin(a))n=sinn(a) or any power but (-1).)

Algebra of arc-functions is trickier than algebra of functions themselves. Geometric constructions of

sin
-1, cos

-1…etc. are not so tricky but quite simple and revealing. To find sin
-1(0.5), for example, we draw a

horizontal line at y=0.5 and see where it intersects the unit circle. (Fig. 7a) Nothing to that! Except, we see

there are two angles 1= /3 and 2=2 /3 that give sin 1=0.5=sin 2. The same applies to cos
-1(0.5) except now

the angles are ± /3. (Fig. 1.7b) Note the antipodal (±180°) angles that equal tan
-1(0.5). (Fig. 1.7c)

X

a =0.5
Y

radius
r =1

O

(a) Find arc-sine σ=sin-1(0.5)

 π

 6

 5π�

  6

X

b/r =0.5
Y

radius
r =1

O

(b) Find arc-cos σ=cos-1(0.5)

 +π

    3  −π

    3
σ2= X

a/b=0.5
Y

O

(c) Find arc-tan σ=tan-1(0.5)

b=1

b =0.5

a/r =0.5

a =0.5

σ1=0.464
σ1=σ1=

σ2=

σ2

Fig. 1.7 Geometric construction of arc-trig functions of 0.5=
 2
1 . (a) sin

-1
(
 2
1 )  (b) cos

-1
(
 2
1 )  (c) tan

-1
(
 2
1 )

More challenging is finding arc-secant (say, sec
-1
3.0) by geometry. Try it first without looking at the answer.

Solution Hints:

We need to find the tangent that goes from 3.0 to touch the circle. A circle of radius r=3.0 concentric to the

unit circle has rectangle tangents of that size that we copy from x=3.0 to touch unit circle.

1 2 30 1 2 30 1 a=2 30b=4

Fig. 1.8 Geometric construction of arc tangent, arc secant, and geo-mean square-root.

Or else we simply draw rectangle diagonal thru unit circle. This leads to Euclid’s Geometric Mean

construction of a product square root (a·b) that is 8=2.82… and is the desired tangent in this case.
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Know your calculator and ATAN, too! (atan2(y,x))

Scientific calculators do not always give the solution you want for arc-function
sin-1(a), cos-1(b), or tan-1(b/a). For one thing, they never give an angle in the 3rd

quadrant (minus-x,minus-y) so you could be wrong 25% of the time.
But it is worse than that. “Blind” arc-calculations are wrong half the time.
As you vary altitude a=y from (+1) to ( 1) values in Fig. 1.7a the 1st arc-solution

1= sin-1(a/r) sweeps the unit circle in the right-half plane while its x-reflection is the
2nd solution 2 is in the left-half plane. The calculator ignores 2.

As you vary base b=x from (+1) to ( 1) values in Fig. 1.7b the 1st arc-solution 1=

cos-1(b/r) sweeps the unit circle in the upper-half plane while its y-reflection is the 2nd

solution 2 is in the lower-half plane. Again, the calculator ignores 2.
Varying either altitude a=y or base b=x from (+1) to ( 1) in Fig. 1.7c gives a full

range of solutions 1= tan-1(a/b) but a calculator cannot distinguish between the first
solution and the 2nd antipodal solution 2= tan-1(-a/-b) since a/b=-a/-b.

So the calculator plays it safe and gives the acute angle solution in the arc-range

–90° and +90°, that is 
 
(

  2   2
+ ) . The obtuse angle solution is ignored for ranges +90°

to +180° 
  
(2nd quadrant :

  2
+

< + )  or -90° and -180° 
  
(3rd quadrant :

  2
> )

A correct solution is the sure-fire atan2(y,x) function that requires you to give
both the altitude a=y and the base b=x (with correct signs, of course) so it knows
which quadrant you’re in. The atan2, built into calculators gives what is called the
rect-to-polar coordinate conversion often labeled by a 

  
(x, y) (r, ) -button.

 Plug in x and y and out comes 
  
r = x

2
+ y

2 and 
  
= tan

1

x

y . The  is our correct .

Trig function plotting exercises

Use ruler&compass to plot the function y=cos(x) and y= cos-1(x)=arccos(x). Do y=sin(x) and y=sin-1(x).

Begin by constructing a 12-pt “clock” circle. Repeat using 45° diagonals to make a 24-hr clock.

Then you project the 24 points horizontally for y=cos(x) and vertically y=cos-1(x)=arccos(x).

Shift the plot by 3 hours (90°) to get the sine and arc-sine functions. Each “hour” is angle 15° or /6.

These are really important curves!
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cosine wave
y =cos(x)

sine wave
y =sin(x)

arc-cosine
y =cos-1(x)

arc-sine
y =sin-1(x)
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Chapter 2. Velocity and momentum
Recall the car-crash problems discussed first in Chapter 1 regarding Fig. 1.1. The first one involves a

text-messaging driver of 4-ton SUV going 60mph SUV rear-ending a dawdling 1-ton VW going 10mph. (Fig.

1.1b.) What happens then? What velocity or velocities do the cars have just afterwards?

As sketched in Fig. 1.1b, the answer depends on whether it’s“Ka-Runch” or “Ka-Bong” or some more

generic noise like “Ka-whump”. By“Ka-Runch” we mean the cars crumpled enough to become interlocked into

one hunk of metal weighing 5 tons. (4+1=5) This is a simple problem that is solved by drawing a line of slope

(–4/1) on a velocity vs. velocity graph from before-crash-point (VSUV
INITIAL= 60,  VVW

INITIAL= 10)  to where that line

intersects the red 45° (VSUV=VVW)-line at the after-crash-point (VSUV
FINAL= 50,  VVW

FINAL= 50).  (Fig. 2.1)

 �������!
VSUV

IN=60mph

VVW
IN  =10mph

50mph
20 40 60 90

20

40

60

80

50mph

100mph

100mph

VVW

VSUV

 �������!
VSUV

FIN=50mph

VVW
FIN  =50mph

VVW=VSUV

line

0

INITIAL

10 30 70 80

90

10

30

70

F FINAL

K
a-

R
un

ch

I

Ka-Runch
(Extreme inelastic collision) 4

-1

= ΔV
SUV

ΔV
VW

M
SUV

-m
VW

 4
-1 =

slope

Fig. 2.1 Anatomy in velocity space of a “Ka-runch!” that is an extreme inelastic collision.

The logic behind a (VSUV=VVW)-line is that interlocked vehicles have equal velocity. The logic behind a

Ka-Runch-line of slope (–4/1) is subtler. It is due to Newton’s 1st axiom or “law” that says Nature conserves

so-called momentum, a sum of products of each mass with its velocity. It’s a law we can live with but, how?

Momentum exchange: a zero-sum game

During the car crash the velocity coordinate pair (VSUV ,VVW) change very rapidly in moving from initial

point I at (60,10) to final point F at (50,50) in Fig. 2.1. The Ka-Runch takes less than 1/50th of a second!

During that time, SUV will only lose one unit of velocity for every four units gained by VW since SUV is

four times heavier than VW.  Newton writes this as a total momentum conservation equation.

PSUV +PVW =MSUV·VSUV+ mVW·VVW = PTotal =constant (2.1)

Checking (2.1) with Fig. 2.1 gives a total momentum PTotal =250 that the poor SUV and VW can’t change.

4·60+1·10 =4·VSUV+1·VVW =4·50+1·10 = PTotal =250 (2.2)

The change of PTotal must be zero ( PTotal =0) before, during, or after the crash. It’s a zero-sum game.
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MSUV· VSUV+ mVW· VVW = PTotal =0 (2.3)

Dividing by SUV change-of-velocity ( VSUV) and VW mass (mVW) gives the slope relation in Fig. 2.1.

M
SUV

m
VW

+
V

VW

V
SUV

= 0   or:
V

VW

V
SUV

=
M

SUV

m
VW

(2.4)

           PTotal is also conserved in an ideal Ka-Bong of Fig. 2.2. Here cars bounce off each other without damage.

That’s unlikely at 60mph speeds! So Fig. 2.2 is rescaled to units of feet per minute. Then initial 
 
V

SUV

IN =60 feet

per minute=1ft. per sec. is more like a parking lot speed, and insurance claims are less as the VW is bumped

from an initial 
 
V

VW

IN =10 ft per min to 
 
V

VW

FIN =90 ft per min=1.5 fps=1.02 mph. To find 
 
V

VW

FIN in Fig. 2.2, draw an

arc from initial I-pt (60,10) to hit final F-pt (40,90). Arc-center is Center of Momentum COM pt-(50,50) on

the 45° line. (It’s the final point if cars get “stuck” to each other as they do in a Ka-Runch like Fig. 2.1.)
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 Fig. 2.2 Anatomy in velocity space of a “Ka-Bong!” that is an extreme or ideal elastic collision.

The Ka-Bong in Fig. 2.2 is like the Ka-Runch in Fig. 2.1 followed by an equal but opposite rebound or

hcnuR-aK (un-crash) that undoes the “damage” by the Ka-Runch. Now you might ask, “Is this possible outside

of the cartoon world or a video game?” Well, certainly not at high speeds and not quite at low speeds.

 Only in a quantum nano-world do perfectly elastic processes exist. Any collision of classical objects,

however gentle, will permanently disturb or exchange thousands or millions of atoms and electrons. We call

this “wear&tear” or entropy growth and ignore it until it has gone too far. (Then, we discard the objects!)

Even gentle bumps like the one starting at initial pt-I in Fig. 2.2 cannot quite go exactly to final pt-F on

the COM circle, but collisions with no appreciable damage pass as (almost) elastic or time reversible bumps.

A video of the Fig. 2.2 I F bump played backwards looks like an F I bump that is not extraordinary. But

a reversed video of the Fig. 2.1 crash looks like a crazy “un-crash” where ruined cars get reborn like new.
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Deducing (perfect?) conservation from (ideal?) symmetry

Newton’s momentum or P-conservation axiom or “law” is one of the most strictly enforced laws in classical

physics. (It’s also quasi-conserved in quantum physics that so often seems to get away with utter mayhem!)

Momentum is like some kind of fluid that you can buy and sell but never can create or destroy. In our car

bumps or crashes the zero-sum-rule says, “Whatever P the VW gains (or loses) the SUV loses (or gains.)”

A classical law without classical proof remains an axiom until deeper theory may rule on it. Quantum

theory has ruled and can shed some light on origin and properties of this mysterious “P-fluid.” It also shows

how to cheat P-conservation and other classical “laws” a little. This will be discussed in later units.

In the meantime it is possible to deduce P-conservation using more fundamental axioms that are called

symmetry principles. This is a grown-up geometric approach that is also very useful in the quantum world.

Most importantly, symmetry helps deduce principles of energy E and E-conservation as discussed below.

Symmetry means “same-etry” or “similarity” or “smoothness” and other “s” words like simplicity.

The fancy technical term is isotropy or isometry with iso meaning same. For example, the most symmetric ball

would be a sphere since it is isotropic and has the same radius everywhere. A most-isotropic plane or most-

symmetric plane is flat and bump-free. Some would say symmetry means Beauty, but others might say it

means Boring. Think of a seemingly endless Kansas prairie for either response.

Symmetry can refer to sameness in time as well as in space and often the two are related. (Think of

driving across Kansas.) The idea of being time reversible is an example from the preceding page. Another is

Galileo’s relative-velocity symmetry or Galilean relativity. Both are behind Fig. 2.3 and Fig. 2.4 below.

Galilean time-reversal symmetry

Suppose a traffic cop is going 50mph in a lane adjacent to the one occupied by the SUV and VW. He or she

records (using radar) the SUV coming up at 60mph, and puts on the blue-light to stop it for exceeding the

20mph limit in a school zone. Just then Ka-Runch! SUV+VW becomes a single 5-ton hunk going 50 mph, the

same speed as the cop. (The cop can just reach across to hand SUV a cyber-ticket for (1) speeding in a school

zone, (2) improper following, and (3) driving while faxing. C-tickets are costly even for SUVites!)

The VVW vs. VSUV graph for the Ka-Runch is shown in Fig. 2.3 as viewed by the 50mph cop. It is the same

as Earth-frame-view in Fig. 2.1 except the cop’s speed of 50mph is subtracted from both V-scales. The cop

sees a final 5-ton SUV-VW hunk going 0 mph relative to cop-frame or COM frame of SUV+VW.

The VVW vs. VSUV graph for the Ka-Bong in Fig. 2.4 is viewed in the 50mph cop-frame or COM-frame.

Again, it’s just Fig. 2.2 with 50mph subtracted off V-scales. Cop or COM-frame view shows simplicity and

symmetry. Velocity values simply change sign as the Ka-Bong crosses the whole COM-circle diameter.

Initial I-pt (10,-40)  (reflection thru COM pt-(0,0))  final F-pt (-10,40)

Reversing time ( t t)  makes (-)velocity (V = t
x

t
  x

= V )  and crosses the diameter oppositely.

Initial I-pt (-10,40)  (reflection thru COM pt-(-0,-0))  final F-pt (10,-40)

That is just Fig. 2.4 with blue time-direction arrows reversed. (INITIAL I switches places with FINAL F.)

Elastic collisions (Fig. 2.4) are symmetric and balanced to t-reversal, but inelastic Ka-whump’s are

unbalanced if they stop short of the COM circle. A Ka-Runch (Fig. 2.3) is unbalanced to an extreme.
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Fig. 2.3 COM-frame or 50mph cop-frame view of a “Ka-runch” inelastic collision of Fig. 2.1.
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Fig. 2.4 COM-frame or 50mph cop-frame view of a “KaBong” elastic collision of Fig. 2.2.

This is a common situation in physics. The real (or generic) world lies between extreme ideals that are

easiest to quantify. On one hand, we’ll say a Ka-whump that ends up close to its inital COM-circle is elastic or

Ka-Bong-like and, on the other hand, a Ka-whump that stops near its COM-point is inelastic or Ka-Runch-like.
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Galilean relativity and spacetime symmetry

Galileo grew up in Renaissance Italy as it flourished from its sea trade. Perhaps, watching ships of trade glide

smoothly in the harbor led him to ideas about relativity of velocity. In any case he wrote about comparing

what a sailor sees in a ship-frame with what is seen in the Earth-frame. He noted how apparent velocity of an

object decreases by subtracting the velocity of the observer’s frame.

Subtraction of the cop’s velocity Vcop=50 from Earth-frame velocity (VSUV,VVW)=(60,10) of SUV and

VW in Fig. 2.2 gives their initial velocity (60,10)-(50,50)=(10,-40) in cop-frame.(Fig. 2.4) Such a subtraction

(or addition if the cop goes the other way) is a Galilean relativity transformation. Fig. 2.4 is a redrawing of

Fig. 2.2 with new (VSUV,VVW) scales, each reduced by 50mph. Or else, you may start with Fig. 2.2 and slide

each velocity point down its 45°-line by 50mph, (COM and cop-frame Earth-relative velocity) as in Fig. 2.5a.

This becomes a “slide-rule” in Fig. 2.5b that quantifies several Galilean frames. The initial VW frame

(VW(I)) is found where the 45°-I-line hits the horizontal (VVW=0) axis. VW starts in frame-VW(I) and is hit by a

(VSUV=50)-SUV that knocks VW into a new frame-VW(F)  of final VVW=80 as SUV slows to a final VSUV=30.

Next a final SUV frame (SUV(F)) intersects the 45°-F-line on the vertical (VSUV=0) axis where a final

(VSUV,VVW)=(0,50)-point-FSUV(F) results if initially a (VSUV=20)-SUV Ka-Bongs a (VVW=-30)-VW at point-ISUV(F).

Note that seven Ka-Bong lines in Fig. 2.5 show seven different-frame views of the same Ka-Bong. In four

frames, one car has V=0 either before or after the Ka-Bong. One frame, the COM has VCOM =0 before and after.

That COM-frame is balanced to velocity reversal (+V V ) . Other frames have distinct V-reversed twins

with INITIAL I and FINAL F switched. For example, ISUV(F) FSUV(F) and FSUV(I) ISUV(I) are symmetry twins.
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(a) Galileo transforms to COM frame (b) ... and to six other reference frames

Fig. 2.5 Galilean transform of  “KaBong” in Fig. 2.2 to (a) COM-frame and (b) to other frame views.

VCOM identifies a frame and is the weighted average of any VSUV,VVW pair (initial, final, or en flagrante

delecti!) on its IF-line. VCOM is zero for the COM frame so its IF-line is the same for +V or -V. (VCOM=±0)
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Geometry of Balance: Center of Momentum (COM) and Center of Gravity (COG)

The uniqueness and constancy of a COM for the SUV and VW is connected with underlying space-time

symmetry or geometry of spatial balance in Newton’s equation (2.1) repeated here in different forms.

PTotal =PSUV +PVW =MSUV·VSUV+ mVW·VVW = MTOTAL·VCOM=constant (2.5a)

Total momentum is a product of VCOM and total mass MTOTAL=MSUV+mVW of a 5-ton SUV-VW “hunk”. This

holds whether the “hunk” forms permanently in a Ka-Runch or the cars bounce off in a Ka-Bong or Ka-whump.

Both PTotal =MTOTAL·VCOM and VCOM are constant throughout the collision regardless of “auto-elasticity.”

VCOM =
MSUV VSUV + mVW VVW

MSUV + mVW

=
weighted  average
of  VSUV  and  VVW

    MSUV :mVW =
constant

MTOTAL

(2.5b)

Weighted average VCOM of (VSUV,VVW) is fixed as V go from initial to in-between to final values. Collisions in

Fig. 2.1 thru Fig. 2.5 all have VCOM=50 in the Earth frame. The 4:1-weighted average of each coordinate pair

(40,90), (50,50), (60,10), (70,-30),etc. on the slope-(-1:4)-line (in Fig. 2.6a below) is VCOM=50.

VSUV
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MSUV=4MSUV=4

mVW=1mVW=1
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(70,-30)
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Fig. 2.6 Geometry of (a) 4:1-weighted velocity average (b) 4:1-weighted coordinate average.

Balance between velocity VSUV and VVW in (2.5b) relates to balance between position xSUV and xVW.

xCOM =
MSUV xSUV + mVW xVW

MSUV + mVW

=
weighted  average
of  xSUV  and  xVW

    MSUV :mVW (2.5c)

As SUV and VW close, collide, bounce, or stick, the Center of Mass xCOM stays at a constant velocity VCOM. In

the COM frame that velocity is zero as sketched in the lower part of Fig. 2.6b. The weighted average (2.5c) of

coordinates is also a Center of Gravity and is cartooned by a 4:1 Greek balance.
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Chapter 3. Velocity and energy
We noted that reflection symmetry or balance in space is connected with momentum or P=m·V

conservation. Uniformity or “sameness” of coordinate and velocity space means the SUV can lose a unit of

momentum only if the VW gains that unit, and vice versa. Momentum is a zero-sum game that does not

depend on whether the two protagonists bounce elastically or crumple in-elastically during their collisions.

Time symmetry and energy conservation

Now we consider symmetry or balance in time. This is connected with a something called energy that

also plays a conservation zero-sum game but, unlike momentum, requires elastic (Ka-Bong!) collisions. While

momentum conservation is axiomatic, energy conservation can be derived from the former. Let’s do that.

Time symmetry

Symmetry balance in Fig. 2.6 is between pairs of velocity values (VSUV,VVW) or spatial coordinates

(xSUV,xVW) of the colliding SUV and VW. Weighted average (2.5b) equals the same VCOM for the initial pair

(VSUV
IN ,VVW

IN ) , the final pair (VSUV
FIN ,VVW

FIN ) , or a pair (VSUV (t),VVW (t)) at anytime t. (Recall (2.1) and (2.5), too.)

PTotal = MTotalVCOM = MSUVVSUV
IN

+ MVWVVW
IN

= MSUVVSUV
FIN

+ MVWVVW
FIN

= etc. (3.1a)

We subtract IN’s from FIN’s to isolate SUV terms from VW terms and redo zero-sum relation (2.3).

0 = PTotal MSUVVSUV
IN MVWVVW

IN
= MSUV (VSUV

FIN VSUV
IN )+ MVW (VVW

FIN VVW
IN ) (3.2a)

 0 = MSUV ( VSUV )       + MVW ( VVW ) (3.2b)

(Ch.1 introduces Delta notation V=V FIN V IN .) Here is another way to write the zero-sum relation.

MSUV (VSUV
FIN VSUV

IN ) = MVW (VVW
IN VVW

FIN ) (3.3)

Now consider balancing IN vs. FIN pair (VSUV
IN ,VSUV

FIN ) for SUV or (VVW
IN ,VVW

FIN ) for VW. Elastic (Ka-Bong!)

cases in Fig. 2.2 or Fig. 2.6 show how VCOM is a balanced IN-vs.-FIN pair-average of both SUV and VW.

VCOM =
2
1 (VSUV

FIN
+VSUV

IN ) =
2
1 (VVW

FIN
+VVW

IN ) (3.4)

This is an algebraic statement of a time reversal symmetry axiom or IN vs. FIN balance mentioned earlier. For

ideal elastic (Ka-Bong!) collisions, IN and FIN points balance around the COM point. Switching past and future

gives a similar Ka-Bong and not a miraculous “un-crash” that shows up for VFIN closer to VCOM than VIN.

Kinetic Energy conservation

A definition of energy is derived by multiplying space and time balance equations (3.3) with (3.4)

2
1 (VSUV

FIN
+VSUV

IN )MSUV (VSUV
FIN VSUV

IN ) =
2
1 (VVW

FIN
+VVW

IN )MVW (VVW
IN VVW

FIN )

    
2
1MSUV (VSUV

FIN )2
2
1 MSUV (VSUV

IN )2
=

2
1 MVW (VVW

IN )2
2
1 MVW (VVW

FIN )2

Then adding the (-)-terms to both sides isolates IN-terms, and a FIN-sum is proved to equal an IN-sum.

                 
2
1MSUV (VSUV

FIN )2
+

2
1 MVW (VVW

FIN )2
=

2
1 MVW (VVW

IN )2
+

2
1 MSUV (VSUV

IN )2 (3.5a)

This
 2

1 M·V2 is kinetic energy (KE) and it is conserved by a relation like (2.5a) for momentum P=M·V.

      constant = KETotal = KESUV
FIN

+  KEVW
FIN   =    KESUV

IN
+ KEVW

IN        where: KE =
2
1 M V 2 (3.5b)

      constant =   PTotal  =     PSUV
FIN

+  PVW
FIN     =       PSUV

IN
+  PVW

IN          where:  P =   M V     (2.5a)repeated
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Conservation relations are insensitive to overall factors. So is factor 
 2

1 in (3.5a) fortuitous? Well, KE

can be defined by integral relation 
 
KE = V dP .(See below.) A V vs.P plot is a triangle with base P=M·V, altitude

V, and area KE=
  2

1
P V =

 2

1 M·V2. With V=(V IN
+V FIN )/2 our product (3.3)·(3.4) above isV P = V dP =

 2

1 M·V2.

Kinetic energy ellipse and momentum line

Momentum-conservation relation (2.5a) is rearranged for plot geometry.

    mVW VVW +MSUV VSUV = (MSUV +mVW ) VCOM  becomes:   VVW VCOM =
MSUV

mVW

(VSUV VCOM ) (3.6a)

The VSUV-vs-VVW-plot of (3.6a) in Fig. 3.1 is a line of slope –MSUV/mVW thru the COM-point (VCOM ,VCOM).

y-y0=m·(x-x0)    where: 
(x, y)   =    (VSUV ,VVW )

(x0 , y0 ) = (VCOM ,VCOM )
and: m =

MSUV

mVW

(3.6b)

Energy conservation relation (3.5a) is rearranged by placing KE and masses into denominator.

2
1MSUV VSUV

2
+

2
1 mVW VVW

2
= KE  becomes:   

VSUV
2

2 KE

MSUV

+
VVW

2

2 KE

mVW

= 1 (3.7a)

The VSUV-vs-VVW-plot (3.7a) in Fig. 3.1 is KE-ellipse (3.7b) of x-radius a and y-radius b to match (3.7a).

x2

a2
+

y2

b2
= 1      where: 

(x, y) =             (VSUV ,VVW )

(a,b) = (
2 KE

MSUV

,
2 KE

mVW

)
(3.7b)

Fig. 3.1 also shows a smaller inelastic Ka-runch-IE-ellipse and a tiny KE-ellipse seen in the COM-frame.
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Fig. 3.1 Elastic KE-ellipse hits (PTotal)-line at IN and FIN pts. Inelastic IE-ellipse hits only at VCOM pt.
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Elastic KE (VSUV=60, VSUV=10), inelastic IE(50, 50), and ECOM
(10, 40) in COM frame is worked out for Fig. 3.1.

 
2
14 602+

2
1 1 102= 7,250

2
14 502+

2
1 1 502= 6,250

2
14 102+

2
1 1 402= 1,000 (3.8)

The difference in energy between the two extreme types of collision, Ka-Bong and Ka-runch, is 1,000 units in the

Earth frame and 1,000 units in the COM frame. But, only in the COM frame does the Ka-runch! take all the

kinetic energy and leave both cars standing still. Galilean symmetry says “cost” of damage is the same in all

frames. Cost of a generic Ka-whump is measured by what fraction of ECOM
=1,000 is lost to inelastic crumpling.

A fine point of Fig. 3.1 geometry deserves notice. The tangent slope to the IE-ellipse at pt-(50, 50) on

the 45°(slope-1)-COM-line is that of the momentum line, namely –MSUV/mVW=-4. Conversely, slope of dashed

tangent lines to the ECOM
(10, 40)-ellipse on (slope=-MSUV/mVW)-line is that of the COM–line, namely slope-1.

This beautiful duality is an important part of mechanics, both classical and quantum. Here it has IN and FIN

points stay on a (slope=-MSUV/mVW)-line even as they coalesce to a tangent point of non-collision!

Head-on (VSUV
IN = 3,VVW

IN = -4) collisions are plotted in Fig. 3.2 below showing increasing inelasticity in

parts (b) and (c). (These involve an M1=6ton SUV satisfying Bush gas-hog entitlement.) The final KE-ellipse

shrinks from the initial elastic Ka-Bong ellipse to a smaller inelastic Ka-whump ellipse (E
whump

=23
1
/3 in Fig. 3.2b)

and to the totally inelastic Ka-runch-ellipse (IE=14 in Fig. 3.2c).

The “in-between-ideal” or generic Ka-whump cases will each have two possible final F-points where the

momentum line cuts the Ka-whump ellipse. The top Fwhump point represents the partial rebound. Below is its

symmetry point FPass-thru that represents cars passing through each other. Fortunately, that’s not a usual

highway event and certainly not a survivable one. But in the quantum world that’s business-as-usual.
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Momentum vs. energy (Bang for the buck!)

What are momentum P and energy E, really? A flippant answer is Bang! and $Buck$. We pay (a lot) for the

latter in order to get the former. A less flippant answer based on space-time relativity and quantum wave

theory must wait until Unit 3. But, we can discuss relations involving P=M·V and E=M·V2/2 in the meantime.

Also, there’s the notion of Force. That’s the rate of being banged in bangs per second, if you will.

And, there’s Power, the rate of being bucked in $bucks$ per second, if you will. (Or, maybe you won’t.)

What we’re trying to say is that force F is the slope F=
 t

P  on a graph of momentum P vs. time t.

Also, we’re trying to say that power  is the slope  =
 t

E  on a graph of energy E vs. time t.

And, do not ever forget that velocity V is the slope V =
 t

x  on a graph of position x vs. time t.

These and other relations (in calculus form) are collected below in preparation for lots of discussion later on.

Quick review of kinetic relations and formulas

The suffix kinetic refers to energy connected directly to velocity of motion (“kinos” means moving).

Kinetic energy KE is distinct from potential energy (PE is “stored” energy) or entropic energy (entropy is

chaotic or “trashed” energy like heat) that will be introduced later.

We now give a quick algebraic run-down of energy-related formulas to be introduced with more detail

and geometry soon. Readers with calculus or physics knowledge might use this to review and connect our

geometrical development to more conventional ones. Novice readers: Patience. Logical relief is coming.

Relations of energy W and space x

Energy or work may be defined by a delta-work product W=F· x of force F and distance- x-pushed.

More precisely, W is an integral 
  

F dx
0

x , the area of a Fvs.x work-plot. Power, a time rate
 
=

t

W  of energy

production, is the product =F·V of force and velocity
 
V =

t

x
=

dt

dx . So, 
 

W = t or 
  
W = dt= F·V dt= F·dx

0

t

0

t .

Relations of momentum P and time t

Momentum may be defined by a delta-momentum product P=F· t of force F and time interval t.

More precisely, P is an integral 
  

F dt
0

t , the area of a Fvs.t plot. Force, a time rate
 
F=

t

P
=

dt

dP  of momentum

production, is a product F=M·a of mass and acceleration
 
a=

t

V . (F=M·a is called Newton’s “2nd Law.”)

With 
 
F=

dt

dP , energy integral 
  
W = dt

0

t
= F V dt

0

t  is 
  
W = F V dt

0

t
=

dt

dP
V dt

0

t
= V dP , the area under a V

vs.P plot where P=M·V is momentum. For a single mass M this area is kinetic energy: 
 2

1 M·V2.

T      a      b      l      e             o      f             k      i      n      e      t      i      c             r      e      l      a      t      i      o      n      s   

Position or space

x = V dt

Velocity or time-rate

of position :V =
dx

dt

Acceleration or time-rate

of velocity :a =
dV

dt

(3.9)

Work or Energy

E = dt = F dx

   = F V dt

   = V dP =
2
1 M V 2

Power or time-rate

of Energy : =
dE

dt
 

        (3.10a)  

Impulse or momentum

P = F dt M V

         (3.10b)

Force or time-rate

of momentum :F =
dP

dt
= M a

 

        (3.10c)
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Exercise

Don’t look at figure below! Try the exercise yourself first.

Plot a  (VSUV-1,VSUV-2)=(60,10) collision like Fig. 3.1 but with an identical M=4 SUV replacing the VW.

VSUV-2

10

20

30

40

-90

-80

-70

-60
-50
-40

-30

-20

-10

-110

-120

50
60

70

80

90
100

5020 40 60 9010 30 70 80

110

120

(60,10)
Initial-point

Elastic
Kinetic
Energy
ellipse
circle
(KE=7,400) Momentum

    PTotal=280
          line

(35,35)

(10,60)

MSUV=4MSUV=4

VSUV-1
1

2

MSUV=4MSUV=4

=60.81

KE
MSUV

10

20

30

40

-60
-50
-40

-30

-20

-10 5020 40 6010 30 70

(60,10)

Inelastic
Kinetic
Energy
ellipse
circle
(IE=1,225)

(35,35)

=49.5
MSUV

Exercise Fig. 3.3 Equal mass M=4 SUV collision geometry for elastic and inelastic cases.
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Quick construction of Energy ellipses

Graph paper facilitates construction of energy ellipses given the two radii a and b in (3.7). The first step is to

draw concentric circles of radius a and b. Then any radial line OBA “points” to a point E on the ellipse.

Ellipse point E lies at the intersection of a vertical line AE thru radial intersection A with circle a and a

horizontal line BE thru radial intersection B with circle b.

Graph grid “finds” E for a radius OBA, no need to draw AE or BE. You can pick x and find y or vice-versa.

O

A

B
E

ab O ab

Exercise Fig. 3.4 Ellipse construction

Ellipse coordinates (xE=a·cos , yE=b·sin ) are rescaled base and altitude (xr=r·cos , yr=r·sin ) of Fig. 1.4.

O

A

B
E

ab
σ

yE=bsinσb

xE=acosσ

σ

yE=bsinσ

xE=acosσ

σ
xE=acosσ

Exercise Fig. 3.5 Analytic ellipse geometry

 Verify that the values (x =a·cos , y =b·sin ) satisfy an ellipse equation (3.7b).

A dual or complimentary (gray) ellipse results if compliment angle c= /2  is used so x and y values switch.
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Chapter 4. Dynamics and geometry of successive collisions
Mechanics gets difficult for many collisions, dimensions, or masses. A single one-dimensional two-mass (1D-

2-body) collision occupies Ch. 2-3. Now we do more dangerous things such as an X2-super bouncer from

Project Ball, our 1969 class project. (Am. J. Phys. 39, 656 (1971)) See the product liability disclaimer in Fig. 4.1.

Caution: Product Liablility Disclaimer
This ballpoint pen could be hazardous to your health!
The experiments which are the subject of this discussion are
both spectacular and potentially dangerous, and care to

involves sticking a ball point pen into a superball or other
hard rubber ball and dropping the two onto a hard floor.
If done correctly the pen will eject the ball with such force
it may stick in the ceiling of the room. Obviously you want
to be careful with this weapon.  And, this goes doubly and triply
for the more advanced models that may be developed in the
course of studying this stuff. It is recommended that
experimenters wear safety glasses when doing these experiments

way to do this experiment and probably the way most people
will go about it.) Some of the tangential experiments associated
with this development are less hazardous. To measure the
potential force function of a ball one may simply paint the ball
and measure the spot size as a function of drop height h.

The saggital approximation   d=r2/2R  allows one to
quickly convert spot radius r to penetration depth x for a
superball of radius R as shown in the figure. Equating this
to Mgh gives the ball potential energy function V(x).

M1=70gmM1=70gm

M0=10kgM0=10kg
bounce
plate

bounce
plate

RR
rr

d

Superball
penetration

depth
     r2

   2R
d=

SuperballSuperball

ballpoint
pen

M2=10gm

ballpoint
pen

M2=10gm

The X-2
pen-

launcher

The X-2
pen-

launcher

Fig. 4.1 The X2-pen launcher with product liability disclaimer.

At first, the X2 looks like a 1D-2-body device. A superball(©™Whammo Corp.) of mass M1 =70gm

launches a ballpoint pen of mass M2 =10gm. But, it has a 3rd body, bounce plate mass-MO=10kg shown by a

rectangle in Fig. 4.1. Actually the third body most responsible for this experiment is old Mother Earth of

mass M = 6·1024 kg . (Earth mass M  and solar mass
 
M = 2·1030 kg  are good-to-2-figure numbers to

remember. More precisely: M = 5.9742·1024 kg and 
 
M = 1.9891·1030 kg .)

Collisions of very large or very small masses suggest thorny questions (Like, “What IS mass?”) and

how do we deal with it. As a mass ratio M1/ M2 approaches zero or infinity the slope of the P-conservation

line in (V1,V2)-space (Recall Fig. 3.2.) approaches infinity or zero, respectively, as drawn in Fig. 4.2(a-b).

Geometric construction in Fig. 4.2a of final velocity for an elastic collision is a vertical reflection thru

the COM point (V1=V2) on the P-line if M1>> M2 or else a horizontal reflection in Fig. 4.2b if M1<< M2.

Inelastic final points approach the COM point more closely if inelasticity is significant. (Recall Fig. 3.2.)

You should understand how a relatively large mass may give huge momentum to a smaller one but

transfer only tiny amounts of energy. Each P-line in Fig. 4.2 is part of a KE-ellipse. In the COM frame (where

the COM point is at origin) the P-line sits on top of an entire E-ellipse as the ratio M1/ M2 approaches (a)

infinity or (b) zero. I visualize COM P-lines as ultra-thin ellipses between I0 and F0 and other P-lines in Fig.

4.2 as segments of a KE-ellipse that has (a) a huge V2-axis 2E / M
2

or (b) a huge V1-axis 2E / M
1

.
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INITIAL

FINAL (Elastic)

0 V1

COM

(a)
M1>>M2

V2
FINAL
(Totally Inelastic)

INITIAL
FINAL (Elastic)

0 V1

(b)
M1<<M2

V2

FINAL
(Totally Inelastic)

COM
F0

I0

F0 I0

(-side of
very tall
ellipse)

(top of very
 long ellipse)

(+side of
very tall
ellipse)

Fig. 4.2 Extreme mass-ratio collisions (a) M1/ M2 approaches infinity. (b) M1/ M2 approaches zero.

Fig. 4.2a reflects our common experience of a bouncy ball of mass M2 hitting the Earth of mass

M with velocity –V0(point I0) and being reflected with velocity +V0(point F0). While standing in the Earth

frame, one is very nearly in the COM frame, too. Earth’s COM velocity is a tiny fraction M
2

/ M of the

apparent ball velocity V0. For super-balls of mass M2=60gm, the fraction M
2

/ M  is 0.06/(6·1024)=10-26.

Bounce momentum absorbed by Earth is 2 M2V0 (or M2V0 if the ball goes “Ka-runch!”) but Earth

absorbs at most a tiny KE of 
2
1 M (V

0
M

2
/ M )2 , that is, a fraction 10-26 of ball KE: 

2
1 M

2
(V

0
)2 . Moreover, for

elastic collisions, Mother Earth returns all the KE to M2 but absorbs double momentum P=2 M2V0.

However, common experience does not prepare us for X2 easily rebounding M2 with more than twice

its drop velocity in Fig. 4.3. (That means M2 rises to more than four times its drop height!)

M1

m2
BANG!

M1

(Bigger�
BANG!)

(Still
Bigger�
BANG!)

m2

M1
M1

m2

Bang1!

Bang2!

M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-Body
Supernova
Superballs

m2

Fig. 4.3 n-Body collision experiments. (a) X-2 drop. (b) Independent collision model. (c) Ball towers.

Independent collision  models (ICM)

To compute final velocities of M1 and M2 it helps to idealize the collision of three bodies M1, M2, and M as a

sequence of two separate 2-body collisions that are completely determined by P and KE conservation. First



©2008 W. G. Harter Unit 1 Classical Momentum and Energy         39

M1 bounces off Earth M . Only then does M1 knock M2 to a faster speed as in Fig. 4.3b. The first collision is

labeled Bang-1(01) in Fig. 4.4a followed by Bang-2(12) in Fig. 4.4b. The first Bang-1(01) between Earth M  and

M1 has a horizontal line like the I0F0 line in Fig. 4.2b. The second Bang-2(12) between mass M1 and M2 has a

line of slope -M1/ M2 =-7 for a M1 =70gm and M2 =10gm (that of a superball and pen, respectively). The

Bang-2(12) line is like the IF line in Fig. 3.1 or Fig. 3.2.

-7

+1

1.0

1.0

-1.0

0.5

2.0

m1 Velocity axis
 Vym1

1.0

1.0

0.5

2.0

m2 Velocity axis
Vym2

m1 Velocity axis
 Vym1

(0,0) (0,0)

COM-point at
 (0.75,0.75))

Bang-1(01)

INIT point at
(-1.0,-1.0)

-1.0

Bang-2(12)

INIT point at
   (+1.0,-1.0)

Bang-2(12)

FINAL point
   (0.5,2.5)

(a)
Bang-1

(01)

(b)
Bang-2

(12)

Bang-1(01)

FINAL point
   (+1.0,-1.0)

Fig. 4.4 (V1-V2)-plot of 2-Bang collision. (a) M1 bounces off floor. (b) M1 hits M2 head-on.

This approximation is called an independent collision model (ICM) and is one secret to analyzing such 1D-3-

body bang-up that otherwise has one too many unknown velocities to be found by just two equations P=0

and KE=0 alone. ICM is exactly true if we initially separate M1 and M2 so three M1, M2, and M never

collectively bargain for available momentum and energy. ICM also applies to n-ball towers in Fig. 4.3c. They

give very high-energy ejections and serve as classical models for supernovae. (N-body bangs are in Ch.8.)

Velocity geometry suggests a family of X2 solutions as shown in Fig. 4.5 for a range of mass ratio

M1/M2. This is an advantage of geometric solutions. Just a few points in Fig. 4.5a show all elastic (V1-V2)

points lie on the 45°-line CPL. Extreme or optimal cases are located in Fig. 4.5b.

 Extreme and optimal cases

First, the upper limit for elastic final velocity is V2=3·V0 at pt-I for infinite mass ratio M1/M2 . If

no energy is lost, a particle of dust on a superball could be ejected three times the speed that the ball hits the
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floor. (And, it could go nine (9=32) times the drop height. However, the elastic ICM model is not so good for

tiny M2 due to molecular and static charge. So bouncing balls do not usually embed dust in ceilings!)

Second, an optimal performance case is shown by pt-M where the collision achieves a 100% transfer

of energy to projectile M2. The M-point is the intersection of the CPL line with the V2-axis on which the M1-

ball velocity is zero. (V1=0) There mass ratio is M1/M2=3.0, the slope of the M-line.

 

Start at
(1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0  C

 L

P

 L is 15::1

 P is 7::1

 C is 4::1

Line  CPL
is elastic collision
final pt. locus for
different
momentum
slopes
or
mass
ratios
M1::M2

1.0

1.0

-1.0

0.5

2.0  C

 L

P

 L is 15::1

 P is 7::1

 C is 4::1

3.0

M2 Velocity axis

V2

M2 Velocity axis

V2

M1 Velocity axis V1 M1 Velocity axis V1(0,0) (0,0)

3.0

 D is 2::1

 Uis 1::1

Bang-2(12)

FINAL
points

(a) (b)

-1.0

U2

U1

Fig. 4.5 X2-Final (V1,V2) (a) Final point locus. (b) Infinite ratio pt. I and maximum transfer pt. M.

Another singular point U is for unit ratio M1/M2=1, a familiar ratio for players of billiards or pool. U

undergoes inversion of velocities (+1,-1)-> (-1,+1). (Its COM point lies at origin.) If the U-line is boosted by

(-1) to (0,-2)-> (-2,0) it is like a straight elastic pool shot. A 100% of KE transfers from a moving ball to an

equal sized ball that was stationary. The same process at half that speed is (0,-1)-> (-1,0) shown by the

Galileo-shifted line U1-> U2 in the lower left hand side of Fig. 4.5b.

Points D between U and M have ball M1 knocked to negative velocity by the down-coming M2. Then

M1 hits the floor (Earth) at velocity –v to rebound at +v. For unit ratio case U, M1 and M2 rebound quite like a

rigid body. Below U, ball M1 rebounds at a speed faster than M2 to hit M2 again. In cases of low mass ratio,

(M1/M2<<1) mass M1 must hit M2 many times to turn it around. We will study this effect shortly.

 Integrating velocity plots to find position

It is important to see how velocity values of Fig. 4.4b are turned into space-time position plot lines. Consider

the first collision (Bang-1(10)) in Fig. 4.6a and corresponding space-time paths in Fig. 4.6b.
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Initial velocity Vy1(0)=-1.0 gives a slope (distance)/(time) of an M1 path but doesn’t tell where is the path or

particle. The same for velocity Vy2(0)=-1 of M2 in Fig. 4.6a. The paths need location, location,…

Initial position values such as (y1(0)=1, y2(0)=3) locate the paths as shown in Fig. 4.6b. Each path

keeps its slope until a collision (Bang-1(10)) between M1 and the floor occurs at y1(t=1) where its path and the

floor intersect. Then, according to Fig. 4.6a, M1 bounces its slope from Vy1=-1 up to Vy1=+1. Meanwhile, the

upper path (M2) maintains its down slope of Vy2=-1 until it intersects the rising path of M1.

Bang-2(12)
position

Ceiling at y=7

Time
t-axis

Height
y-axis

slope
   -1

slope
  +1

Bang-1(01)
position

y2(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(Vy1,Vy2)=(+1.0,-1.0)

y
(a)  Vy2 vs. Vy1 Plot of Bang-1(01) (b) y vs. t   Plot of Bang-1(01)

Bang-1(01) Bounces (-1,-1)  to  (+1,-1)

(Vy1,Vy2)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y1(0)=1

0.5

-1.0 -0.5

-0.5

??
??Floor at y=0

Fig. 4.6 Plots of 1st collision (Bang-1(10)). (a) Velocity-velocity plot. (b) Space-time plot.

At time (t=2) there is an intersection of paths and the 2nd collision (Bang-2(12)) between M1 and M2 at

space-time point (y1(2)=1, y2(2)=3). This gives Vy1=0.5 and Vy2=2.5 in Fig. 4.4b or in Fig. 4.7a-b below.

Then to keep M2 from flying away we install an elastic ceiling at y=7.

The game becomes more interesting as Bang-3(20) between the ceiling (part of Earth MO) is shown in

Fig. 4.7b by a vertical arrow (like an IF line in Fig. 4.2a) reflecting M2 to speed Vy2=-2.5. Then M2 has Bang-

4(12) between M1 and itself that sends it back to the ceiling at a blistering speed of Vy2=+2.7  as M1 returns

more slowly toward the floor with velocity Vy1=-0.5.

The high speed of M2 lets it go to the ceiling for Bang-5(20) and return to knock M1 down once more

(Bang-6(12)) before M1 hits the floor at Vy1=-0.9. (Bang-7(10)) Then M2 having lost speed to Vy2=+1.5 hits the

ceiling (Bang-8(02)) and returns for Bang-9(12) with M1 rising at Vy1=+0.9.

Masses are treated as point-masses that travel along straight lines between collisions in space-time

plots. This is an ideal gravity-free ICM approximation with only straight lines in VV-plots. So we may derive

motion without having to integrate the kinetic equations at the end of Ch. 3.



©2008 W. G. Harter Chapter4. Dynamics of successive collisions 42
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Fig. 4.7 Collision sequence. (a-b) Up to Bang-4(12). (c-d) Up to Bang-9(12).

For comparison, a force-law simulation using BounceIt of the bang sequence of Fig. 4.7 is shown in

Fig. 4.8. It assumes balls instead of ideal point particles yet compares quite well. (So far.)
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Fig. 4.8 BounceIt simulation up to Bang-9(12) in space-time plot.

Bang sequences can be very sensitive to ceiling height and initial ball values. In fact, we see examples

of extreme sensitivity to initial values and parameters. Often this leads to classical chaos in which every slip

in accuracy may grow exponentially so that classical mechanics loses predictability.

Running BounceIt simulation of the 1:7 system for 69 steps fills up the V-V screen with dots that

forms an oval as shown in Fig. 4.9. Among other things, it shows conservation of energy in the form of the

KE ellipse (3.7). Bang P-lines (IF-lines) in Fig. 4.7b must terminate on a KE-ellipse of energy as shown.

KE(unitV
1
,V

2
) =

2
1 M

1
12

+
2
1 M

2
12

=
2
1 ·8  (for M

1
=7 and M

2
=1)

The major and minor radii are a = 2·KE / M
<
= 2 2 = 2.828  and b = 2·KE / M

>
= 2 2 / 7 = 1.069  and

this checks with Fig. 4.9. The IF-line geometry provides a strange way to construct an ellipse. Later this

geometry shows some deep relations between velocity, momentum and energy.

Fig. 4.9  BounceIt simulation up to Bang-69(12) in velocity-velocity plot.
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Vector notation and space-space plots

Balance equation (3.4) concisely sums up preceding constructions or plots of elastic collisions.

V
1
FIN

+V
1
IN( ) / 2 = V COM

V
2
FIN

+V
2
IN( ) / 2 = V COM

 or:
V

1
FIN

= 2V COM V
1
IN

V
2
FIN

= 2V COM V
2
IN

(3.4)repeated

More concise notation uses vector equations or arrays.

 
v

1
FIN

= 2V COM v
1
IN

v
2
FIN

= 2V COM v
2
IN

  is written: 
v

1
FIN

v
2
FIN

=
2V COM v

1
IN

2V COM v
2
IN

= 2
V COM

V COM

v
1
IN

v
2
IN

(4.1)

It saves writing two (=)’s and two (-)’s. Also, each column vector may be labeled by a “fat” letter.

 

vFIN = 
v

1
FIN

v
2
FIN

=vFIN ,        VCOM
=

V COM

V COM
=VCOM  ,        vIN = 

v
1
IN

v
2
IN

=vIN  . (4.2)

Each fat-letter stands for an arrow vector in Fig. 4.10.  The Gibbs vector form of equation (1.1.3) or (4.1)

uses fat-v or over-arrow-  
 

v .

  vFIN = 2 VCOM – vIN ,  or:    VCOM
=

vIN
+ vFIN

2
. (4.3)

Algebra and geometry are helped by fat-v (vector) notation. Fig. 4.10 shows how vector VCOM is half

the vector-sum vIN+ vFIN of IN velocity vIN and FIN velocity vFIN. (Since this is an elastic collision, the labels

IN and FIN may be switched.) VCOM lies on a (vIN+ vFIN)-parallelogram diagonal. The opposite diagonal

(dashed M1/M2 line) bisects (vIN+ vFIN) to give VCOM
=(vIN+ vFIN

)/2.

      

V1
axis

V2
axis

m2

m1

(v1,v2)

(v1,  v2)

IN

FIN

Δ

vIN

vFIN

vIN + vFIN
VCOM=

vIN + vFIN

2

VCOM

ϖ

IN   IN

FIN     FIN

Fig. 4.10 Vector collision velocity diagrams (After equation (4.1).)

Note the distinction between vectors v=(v1, v2) above for two particles each in one-dimension and more

common vectors v=(vx, vy) (or v=(vx, vy, vz)) for one particle in two-dimensions (or three dimensions).
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Fig. 4.11 shows how vectors help analyze the results of Bang-1(01) and Bang-2(12) collisions done

before in Fig. 4.7. What’s new is a space-space y2 vs. y1 or position-vector y-plot whose paths are called

spatial-trajectories or just plain trajectories. They are made like the space-time paths in Fig. 4.7 by

transferring velocity slopes over to the space plot, but vectors in Fig. 4.11 simplify this geometry.

As the construction steps in Fig. 4.11 show, one easily transfers each velocity vector v(n) from the V2

vs.V1 plot so it points away from start point y(n) in the y2 vs. y1 plot. Step-0 does this by drawing initial

velocity v(0)=(-1,-1)  to point away from our given initial position y(0)=(1,3). Then you extend that v-vector

until it hits the floor (as v(0) does at y(1)=(0,2).), or hits the collision line (y2=y1) (as v(1) does at

y(2)=(1,1).), or hits the ceiling (as v(2) does at y(3)=(2.2,7).). Each such “hit” is a Bang, Bang-1(01) at y(1),

Bang-2(12) at y(2), or Bang-3(20) at y(3). Then from each Bang-n position point y(n) is drawn the next v(n)-

velocity vector from the V2 vs.V1 plots. This process continues in Fig. 4.12.
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Step-0: At starting position y(0)=(1,3) draw initial velocity v(0)=(-1,-1) line.

Step-1: Extend v(0) line to floor point y(0)=(0,?) and draw Bang-1(01)
velocity v(1)=(1,-1) line. (Find v(1) using V-V plot.)
Step-2: Extend v(1) line to collision point y(0)=(?,?) and draw Bang-2(12)
velocity v(2)=(0.5,2.5).  (Find v(2) using V-V plot.)

Fig. 4.11 Vector collision velocity diagrams with Velocity-Velocity space and space-space.
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Fig. 4.12 Vector collision diagrams continued with velocity-time and space-time plots added.
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Some remarks about space-space plots are in order. First, position y(n)-vectors of the Bang-n points

are not drawn in Fig. 4.12 to avoid clutter. Also, ideal (small) masses called point masses are assumed.

Help! I m trapped in a triangle.
The trajectory in these figures is confined to the triangle above the 45°-collision line. Our model keeps

m2 above m1. The right-hand “ceiling” in the figures never is hit because m1 always is knocked down by m2

before it touches the ceiling, and m2 never sees the floor because m1 is in the way. (Quantum theory doesn’t

encourage this feature. Quantum objects pass easily through each other! )

Two balls in 1D vs. one ball in 2D
For ball-Earth collisions involving ceiling or floor, the paths bounce in the space-space plot as though

they’re inside a box. Only one component V1 or V2 changes each time and only by changing ±sign. Off the

floor: (V1 ,V2) changes to (-V1,V2) , off of ceiling: (V1,V2) changes to (V1,-V2). It is like a single particle

bouncing around a pool table. Here (V1,V2) acts like (VX ,VY) in two dimensions, so two particles in one-

dimension use graphs similar to one particle in two dimensions, a useful analogy in quantum theory.

Angle of incidence=Angle of  reflection
When paths bounce off the floor and ceiling in the space-space plot, the angle of incidence equals the angle of

reflection just as light rays reflect off mirrors. (Newton imagined little light corpuscles bouncing.) It is

customary to measure path angles from the normal or perpendicular to a mirror so a normal bisects the angle

between the incident and reflected paths.

For m1-m2 Bangs off the 45°-collision line, the bisecting line has the slope -M1/M2=-7. It is like having

mirror facets at slope M2/M1=1/7 along the 45°-collision line. For equal-mass-(M1=M=M2) balls, or one ball in

two dimensions, the bisecting line slope at the 45°-collision line is –1 or -45° and the collision line acts like a

unit-slope mirror on a triangular billiard table. It is not quite that simple if M
1

/ M
2

1 .

Consider the two collisions Bang-3(20) and Bang-4(12) in Fig. 4.12. Velocity v(2) bounces off the ceiling in

Bang-3(20) into v(3), whose velocity slope is close to the mass-ratio M1/M2 which is 7:1 here. So the next

collision Bang-4(12) bounces v(3) off the diagonal into v(4) which is close to –v(3). It’s followed by another

ceiling bounce Bang-5(20) into v(5) heading down for another collision Bang-6(12).

Bang force
Lower Fig. 4.12 has a velocity vs. time plot next to a space-time plot. (A y-t plot in gray is under the V-t plot,

too.) Each Bang means a change in velocity for any particle involved in the collision. By Newton’s 2nd law

(1.1.9) each change in velocity, v to v+ v, or better, each change in momentum, mv to m(v+ v), requires a

force impulse F· t= m( v) on each mass that changes. Shortly, we study ways to deal with this F.
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Kinematics versus Dynamics

The velocity-velocity (v1,v2) plots, such as the left side of Fig. 4.12, fall in a category known as

kinematics, or momentum analysis, which is concerned with how things are going, where they’re headed, or

what is their velocity or momentum and energy. (kinos means movement.)

In contrast, the space-time plots, such as the right side of Fig. 4.12, fall in a category known as

dynamics, or coordinate analysis, which is concerned with how things are located, where they are, or what are

their coordinate or position and time schedules. (dynos means change.) We introduced the space-space (x1,x2)

plot, another geometric or trajectory representation of dynamics.

Before going on, let’s compare how kinos and dynos play out in classical Newtonian physics versus

their corresponding roles in quantum physics. This is a preview for later chapters, mainly ones in Unit 3.

Dynos and Kinos: Classical  vs. quantum theory
In Newtonian physics, a precise position plot (yk vs. time) lets you find a precise velocity plot, too,

and, a velocity plot (Vk vs. time) lets you find a position plot if you know starting position values. (We did

just that in Fig. 4.7 and Fig. 4.12.) In calculus, finding position from velocity values is called integration, and

finding velocity from position values is called differentiation. Of the two, the latter is formally easier but

numerically more sensitive and error prone.

In quantum physics, having a precise velocity plot renders a position plot meaningless and vice-

versa! Werner Heisenberg was the first to state this quantum idea, now known as Heisenberg’s Principle. If

you know momentum exactly, that means a uniform wave is everywhere, and all positions are equally

possible. If you know position exactly, that means every momentum is possible, implying a “wave-bomb”

about to blow up the universe! (Fortunately, neither of these extremes readily exist.)

All this sounds crazy to most of us who are born-and-bred Aristotelean-to-Newtonian students. It is

difficult enough to go from Aristotle’s what-you-see-is-what-you-get (WYSIWYG) universe to Newton’s

corpuscular one. A quantum universe is yet another step removed on the WYSIWYG scale.

A way to see the quantum universe (Perhaps, it is the way.) is to learn about wave kinematics and

dynamics without Newtonian corpuscles and see how waves mimic corpuscles and do so quite cleverly. The

quantum universe is a WYDAWYG (waves-you-don’t see-are-what-you-get) world!

So our plan is to cast classical Newtonian kinematics and dynamics in a form that carries over into

vibration and wave kinematics and dynamics. It is done by analogy with classical waves such as sound

waves, water waves, and (most important) light waves. Many classical wave analyses invoke corpuscles

(including, for Newton, light waves) so these analogies, like any analogy, need critical use of an Occam’s

razor that must be sharp. Above all, symmetry principles must be taken seriously.
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Exercise: Construct a history of a 4:1 mass ratio bounce. x1(0)=1.5, x2(0)=3.0, v1(0)=-1, v2(0)=-1

Ceiling height=7.0.(For bottom row: Ceiling height=6.0 ) The 4:1 mass ratio case is surprisingly periodic.

Start at
(-1.0,-1.0)

1.0

1.0

-1.0

0.5

2.0

Vy1

Vy2
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Exercise: Complete Fig. 4.12 past “gameover” point. Ceiling height=3.0
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Chapter 5 Multiple collisions and operator analysis
Analysis of many collisions with very different masses requires an advanced kind of geometry and

algebra involving matrices and symmetry operators. Similar analysis is needed for quantum theory so this is a

good opportunity to learn about these concepts using a classical bang physics that is quite clear-cut.

Doing collisions with matrix products
Fig. 5.1 shows a big mass m2=49 bang a little mass m2=1 more than ten times off the ceiling before

being halted. This tests our collision precision! To check our results we use our previous vector equation

(4.1) to make a matrix equation in (5.1) with V COM
= m1v1 + m2v2( ) /M  and total mass M = m1+ m2.

  
v

1
FIN

v
2
FIN

=
2V COM v

1
IN

2V COM v
2
IN

(4.1)repeated
v1

FIN

v2
FIN

=

2
m1v1 + m2v2

m1 + m2

v1

2
m1v1 + m2v2

m1 + m2

v2

 =
1

M

m1v1 m2v1 + 2m2v2

2m1v1 + m2v2 m1v2

(5.1a)

(Let v
1
IN
=v

1
and v

2
IN
=v

2
here.) Vector equation (5.1a) is converted to matrix equation  v

FIN
=Miv in (5.1b).

v1
FIN

v2
FIN

=
1

M

m1 m2 2m2

2m1 m2 m1

v1

v2

(5.1b)

Each IN-to-FIN bang is a  v
FIN

=Miv IN operation (5.2a). Matrix product  MiN (5.4b) is bang-M following bang-N.

     
 

Miv =
A B

C D

a

b
=

Aa + Bb

Ca + Db
(5.2a)

 

MiN =
A B

C D

a c

b d
=

Aa + Bb Ac + Bd

Ca + Db Cc + Dd
 (5.2b)

Matrix M operates column-by-column on another matrix N as it does on a vector v. The off-the-ceiling matrix

C = ( 0
1  -1

0 )  changes (v1, v2) to (v1, -v2) (Odd-n Bang-n(02)) A 2-ball collision matrix M (Even-n Bang-n(12)) and

ceiling bang C act p-times in matrix products 
 
vFIN p

= (CiM)p
iv = (CiM)i(CiM)i(CiM)i…(CiM)iv  to give Fig. 5.1.

   
 

CiM =
1 0

0 1

1

M

m1 m2 2m2

2m1 m2 m1

=
1

M

m1 m2 2m2

2m1 m1 m2

=
1 0

0 1

0.96 0.04

1.96 0.96
=

0.96 0.04

1.96 0.96
(5.3)

(5.4) shows (p=5) double-bangs 
 

CiM =
0.96 0.04

1.96 0.96
 following a floor-bounce F =

1 0

0 +1
 or 11 bangs in all.

v1
FIN 11

v2
FIN 11

=
1 0

0 1

0.96 0.04

1.96 0.96

1 0

0 1

0.96 0.04

1.96 0.96

1 0

0 1

0.96 0.04

1.96 0.96

1 0

0 1

0.96 0.04

1.96 0.96

1 0

0 +1

v1
IN
= 1

v2
IN
= 1

INITIAL (0)( )

v1
FIN 11

v2
FIN 11

=
0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

v1 = 1

v2 = 1
after Bang-1( )

  

v1
FIN 11

v2
FIN 11

=
0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

v1 = 0.92

v2 = 2.92
after Bang-3( )

               Note:  
0.92

2.92
=

0.96 0.04

1.96 0.96

1

1
 

v1
FIN 11

v2
FIN 11

=
0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

v1 = 0.7664

v2 = 4.606
after Bang-5( )

                             Note:
0.7664

4.606
=

0.96 0.04

1.96 0.96

0.92

2.92

v1
FIN 11

v2
FIN 11

=
0.96 0.04

1.96 0.96

0.96 0.04

1.96 0.96

v1 = 0.5515

v2 = 5.924
after Bang-7( )

                                     Note:
0.5515

5.924
=

0.96 0.04

1.96 0.96

0.7664

4.606

(5.4)

v1
FIN 11

v2
FIN 11

=
0.96 0.04

1.96 0.96

v1 = 0.2925

v2 = 6.768
after Bang-9( )

 Even after 9 bangs, big m1 still has a small upward velocity v1=0.2925.
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After Bang-11(02) big m1 is nearly stopped and little m2 is coming down at v2=-7.071 with all the energy!

v1
FIN 11

v2
FIN 11

=
v1 = 0.0100

v2 = 7.071
after Bang-11( )

(5.5)

Look out below! As m1 turns back it crosses v1=0 axis in Fig. 5.1a. The greatest curvature (acceleration or

force) for m1 is between Bang-8 and Bang-14 in Fig. 5.1b just when m2 is busiest. Geometry works, too!
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Fig. 5.1 Multiple Bangs of the m1=49 and m2=1 superball system. (a) V vs V plot. (b) Y vs time.
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Big m1 descends rapidly after being pushed down by m2 hits. Soon hits by an exhausted m2 become

less frequent. At some point m2 ends up slower than m1 and can’t hit it again. With no floor both would fall

below y=0 with no further bangs. (We’ll call this a game-over point. As an exercise, you should find it.)

However, if a floor intervenes, then a 2nd floor-bounce matrix F= ( 0
1  +1

0 ) changes (v1, v2) to (-v1, v2) and

bounces ball-m1 back up to start the whole process over again. Ball-m1 does another graceful up-then-down

time trajectory very much like the one shown on the right-hand side of Fig. 5.1.

Except for floor bounces, the m1-ball in Fig. 5.1 experiences smoother flight than in Fig. 4.12 where a

more massive m2-ball jerks it severely. A smaller mass m2 has less momentum-per-bang. The result is a

gentler and smoother force cushion for m1. Force and potential field theory will be derived from this.

Rotating in velocity space: Ticking around the clock

Here is an example of geometry and slope ratios being helpful. If you view the ellipse in Fig. 5.1a

lower-edge-on (and do the exercise to finish it!) you may see it as a circular clock with each double-bang (odd-

bangs 1,3,5,…) rotating the v-vector like a clock hand ticking equal-angle jumps around a dial.

This suggests making energy ellipses (2E=m1v1
2
+ m2v2

2
) into energy circles (2E =V1

2
+V2

2
) using

rescaled velocity (V1,V2), as shown here and in Fig. 5.2(a-b).

 V1=v1 m1,  V2=v2 m2   where: 2E=m1v1
2
+ m2v2

2
=V1

2
+V2

2
    (5.6)

Big-V variables replace little-v’s by setting (v1 =V1/ m1, v2 =V2/ m2) in matrix relation (5.1).

v1
FIN1

v2
FIN1

=
1

M

m1 m2 2m2

2m1 m2 m1

v1

v2

(5.1)repeated

V1
FIN1 / m1

V2
FIN1 / m2

=
1

M

m1 m2 2m2

2m1 m2 m1

V1 / m1

V2 / m2

(5.7)
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48
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=
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=
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2
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Fig. 5.2 Velocity-velocity clocks. (a) Energy ellipse (As in Fig. 5.1) (b-c) Energy bang-clock angles

(d) Velocity-squared E-plot.  (e) Mass-scaled V-squared E-plot.  (f) Integral right triangles
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Clearing scale factors mk gives big-V matrix relations so (5.10) below replaces (5.5) above.

   

 

VFIN1 =
V1

FIN1

V2
FIN1

=
1

M

m1 m2 2 m1m2

2 m1m2 m2 m1

V1

V2

=MiV (5.8)

 

VFIN2 =
V1

FIN2

V2
FIN2

=
1

M

m1 m2 2 m1m2

2 m1m2 m1 m2

V1

V2

= CiMiV (5.9)

The trick is to notice a Pythagorean relation x2+y2=1 for the circular bang-matrix components.

m1 m2

M

 

 
 

 

 
 

2

+
2 m1m2

M

 

 
 

 

 
 

2

=
m1 + m2

m1 + m2
= 1   (5.10a)

So the matrix can be defined using sin   and cos . Our example m1=49 and m2=1 is plotted in Fig. 5.2(c).

  Define: cos
m1 m2

M

 

 
 

 

 
    and : sin

2 m1m2

M

 

 
 

 

 
  (5.10b)

A 1-Bang matrix is a reflection by . Our 2-Bang matrix is a rotation by angle -  =-16.26° in big-V space.

V1
FIN1

V2
FIN1

=
cos sin

sin cos

V1

V2

(5.11)
V1

FIN2

V2
FIN2

=
cos sin

sin cos

V1

V2

=
0.96 0.04

1.96 0.96

V1

V2

(5.12)

(5.12) is a big help in N-double-bang calculations like (5.4). Instead of multiplying the matrix (5.9) by itself

N-times, we just replace  =16.26° in (5.12) by N  =81.30° (for N=5) and get answers in (5.13) below pronto!

  

 

V1
FIN2N

V2
FIN2N

= (CiM)N
iV =

cos N sin N

sin N cos N

V1

V2

=
cos5 sin5

sin5 cos5

V1

V2

=
0.1512 0.9885

0.9885 0.1512

V1

V2

( for : N = 5)    (5.13a)

Relating V’s to v’s by (V1=v1 m1, V2=v2 m2) gives (5.1b). Here 
 
(CiM)N is after floor F gives (v1, v2)=(1,-1).

v1
FIN2N

v2
FIN2N

=

cos N
m

2

m
1

sin N

m
1

m
2

sin N cos N

v1

v2

=
cos5

1

7
sin5

7sin5 cos5

v1

v2

=
0.1512 0.1412

6.9194 0.1512

1

1
=

0.010

7.071
for :

N = 5

m1

m2

= 49
    (5.13b)

Without a 2nd floor-bounce-back operation F, this sequence ends near bang-21 or “game-over.” (How?

Do the exercise!) Matrices can do collision sequences easily and even can “engineer” them.

Statistical mechanics: Average energy
If two balls of mass m2=1 and m1=7 bounce back and forth between wall the small ball goes faster on

the average than the bigger one. How much faster? Let’s assume that arrows on the scaled velocity clock in

Fig. 5.2(b) get uniformly distributed around its circle after many collisions. (Fig. 5.2(b) shows only m1-m2-

bounce arrows. m2-ceiling-bounce-arrows fill up the upper half.) A ball’s velocity and momentum must sum

and average to zero otherwise it will not stay in the region between the floor and the ceiling.

But, what is average squared-velocity v2 of each ball? An energy plot in the space (V1)
2 vs (V2)

2 of

scaled velocity-squared helps to answer this. The result is a 45° line shown in Fig. 5.2(e). In other words

points on the circle in Fig. 5.2(b) get mapped onto the 45° line in Fig. 5.2(e) by KE conservation.

  (V1)
2 + (V2)

2 = 2 KE = m1(v1)
2 + m2(v2)

2
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The average of all points on the 45° line is its bisector.

  (V1)
2 = KE = (V2)

2 or:  m1(v1)
2 = KE = m2(v2)

2

This gives the average velocities or root-mean-square-speeds v1
rms and v1

rms of m1 and m2.

v1
rms

= KE / m1 v2
rms

= KE / m2 (5.14)

Each ball, regardless of mass, gets equal share (50% if there are just two) of the total energy. So, if m1 is 7

times m2 then the mean speed of m2 is 7=2.65 times faster than that of m1. The 1st bang in Fig. 4.4 gives 2.5.

Bonus: Rational right triangles
Geometry often offers interesting numerics. In this case, the general right triangle in Fig. 5.2(c) makes

integer or rational fraction solutions to the Pythagorean sum a2+b2=c2 such as the famous (a=3,b=4,c=5)

right triangle. Perfect-square mass values (m1 and m2=1, 4, 9, 16, 25, 36, 49, 81, 100,…) will give integral

valued right triangle altitude a= (4 m1·m2), base m1-m2, and hypotenuse m1+m2. Examples in Fig. 5.2 are

(a=14,b=48,c=50) for (m1=49, m2=1) and (a=12,b=5,c=13) for (m1=9, m2=4).

Reflections about rotations: It s all done with mirrors
In 1843 Hamilton discovered his quaternion algebra {1,i,j,k}, a mathematical jewel. In 1930 Pauli found

related spinor matrices {1, X,  Y,  Z}. We label Pauli matrix Z as sigma-A= A (A for Asymmetric) and X as

sigma-B= B (B for Balanced). They are Hamilton’s k and i with an imaginary factor i= 1 attached.

A =
1 0

0 1
= Z =ik (5.15a) B =

0 1

1 0
= X =ii (5.15b)

Other matrices, sigma-C= C (C for Circular) and sigma-0= 0(0 for “Origin”) are products like A B or A
2.

  A B =
1 0

0 1

0 1

1 0
=

0 1

1 0
=i C =i Y = j (5.15c) A A = B B = C C =

1 0

0 1
= 0 =1=1   (5.15d)

Hamilton’s {i,j,k} square to -1. (i2
=j2

=k2
=-1) That is like i 2

= 1 . But, Pauli- ’s square to +1. (1= X
2
= Y

2
= Z

2.)

We now relate -matrices to simple super-ball collision reflections and rotations shown in Fig. 5.2.

For example, the A is our “ceiling bounce” C in (5.3) and our “floor bounce” F in (5.3) is just - A.

A =
1 0

0 1
= C (5.15a) A =

1 0

0 1
= F (5.15b)

A geometric view of A (or - A) is mirror reflection thru Cartesian x-(or y) axes in Fig. 5.3a while B (or - B)

is reflection thru mirror planes tilted at angle /4 (or /4) between x-y axes in Fig. 5.3b. General reflection 

thru a mirror plane tilted at angle /2 (Fig. 5.3c) is a sum (5.15c) of A cos  and B sin . We now verify this.

  

=
A

cos +
B

sin =
1 0

0 1
cos +

0 1

1 0
sin =

cos   sin

sin cos
(5.15c)

Like all reflections,  must square-to-one. ( 2=1) It does so because A
2=1= B

2 and A B =- B A.
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σφ acts

   1st

σφ acts

   2nd
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-1
 0

1  0
0 -1 -σA=(       )-1  0

 0  1
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0
1

1
0

-x=(  )
= -σA x

-1
 0

x=(  )

(c) σφ reflection (                     )
     of x-vector:                                 ...of y-vector:

σφ x=(         )y
cosφ
sinφ

cosφ       sinφ
sinφ     -cosφ

x
φ/2

φ/2

σφ y=(           ) sinφ
-cosφ

y

x
φ/2

φ/2
φ

φ
-cosφ

sinφ

cosφ

sinφ

(b)Reflections σB=(       ),

x=(  )
=σB y

1
0

y=(  )   =σB x
0
1

0  1
1  0 -σB=(       )

-y=(  )
= -σB x

 0
-1

y=(  )0
1

 0 -1
-1  0

-x=(  )
= -σB y

-1
 0

Mirror plane
(edge-on)

(d)Rotation:R+φ=σφσA=(                     )   (e)Rotation:R−φ=σAσφ=(                     )cosφ     - sinφ
sinφ         cosφ

 cosφ      sinφ
- sinφ      cosφy

x
φ/2

φ/2

y

xφ/2

φ/2

σA y

σA x

σφ y

σφ x

φ/2

φ/2

σA acts

  1st

σA acts

     2nd

+φ y

x

−φ

−φ

Fig. 5.3 Mirror-reflection geometry (a)± A, (b) ± B, (c) . Right-and-left-handed rotation (e) A (f) A .

We test  on unit vectors x̂ = 0
1( )  and ŷ = 1

0( )  and see that matrix algebra checks with geometry in Fig.5.3c.

   

ix̂ =
cos   sin

sin cos
i

1

0
=

cos

sin
  (5.16a)

   

iŷ =
cos   sin

sin cos
i

0

1
=

sin

cos
  (5.16b)

Geometry Fig. 5.3d also shows that a product 2 1 of any two reflection matrices is a rotation matrix R.

In Fig. 5.3d  A is right-hand rotation R+  but A =R  in Fig. 5.3e is left handed. Rotation angle  is

twice the angle /2 between mirrors. Direction of rotation 2 1 is from 1st mirror (of 1) to 2nd mirror (of 2).

   
 

i A =
cos   sin

sin cos
i

1 0

0 1
=

cos   -sin

sin cos
    (5.17a)

 

A i =
1 0

0 1
i

cos   sin

sin cos
=

cos   sin

-sin cos
  (5.17a)

For example, rotation B A is by +90° and A B is by -90°. Rotation A(- A)=(- A)  A is by ±180°.
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Through the clothing store looking glass

The rotation in V1 vs V2 space of Fig. 5.2b is a product of ceiling bounce and m1- m2 collision that are each a

reflection. An even simpler example of paired-reflection rotation is a clothing store mirror in Fig. 5.4a. It lets

you swing two mirrors like doors to view multiple images of yourself. If you set the angle between mirrors to

/2=30° as in Fig. 5.3 d-e or to 60° as in Fig. 5.4a then you see yourself rotated by twice that angle. Images

are turned 120° counter-clockwise in the right mirror and clockwise (-120°) in the left mirror of the latter.

The sketches in Fig. 5.4a oversimplify the actual images shown by photos of a real mirror pair. The

single reflections for A are not shown in the sketch but clearly visible in photos where the A and  images

both have backwards text and a left hand image of the original right hand. This is corrected in the (-120°)-

rotated A  image and the (+120°)-rotated A image.

A special case is rotation A(- A)=(- A)  A by ±180° due to setting mirrors at exactly /2=90° as in Fig.

5.4b. The result is known as a corner-reflector image. Wherever you stand while viewing a 90° corner you

see your image centered and rotated±180° to face you but it is not reflected. A 90° corner image is as others

see you, complete with a readable monogram on your jacket and your right hand on the right side.

How fundamental are reflections?

A product of two reflections is a rotation R = 2 1, but two rotations just give another rotation R + = R R  and

never a reflection. This makes reflections more basic and productive than rotations.

On the other hand, you cannot do a reflection of a real solid object without entering an Alice-in-

Wonderland looking-glass-world. Moving every atom in a classical object to a reflected position (without

destroying it) is unthinkable! Yet, we easily rotate semi-solid objects (like your eyeballs while reading this).

Waves, on the other hand, are very un-solid and do reflection effortlessly. Rotation takes twice the

effort as seen in the looking glass images of Fig. 5.4. This is why reflection operations are so basic to the

study of wave mechanics, quantum theory, and relativistic symmetry as we will see in later Units 2 and 3.

Symmetry operation R or  is defined by what it does to unit vectors x̂ = 0
1( )and ŷ = 1

0( ) as  (5.16) is

done in Fig. 5.3c. That matrix does that same operation to any and all vectors v =
v2

v1( ) = v1x̂ + v2ŷ  in the space.

 

iv = v1 ix̂ + v2 iŷ = v1
cos

sin
+ v2

sin

cos
=

cos   sin

sin cos

v1

v2

(5.18)

A way to distinguish rotation and reflection operators is by the determinant det|M| of their matrices.

det |M|= det
a b

c d
= a·d b·c det

ux vx

uy vy

= ux ·vy vx ·uy = u v sin u
v

A determinant of matrix M quantifies the space (area in this case) enclosed by vectors in M‘s rows or columns

(u and v enclose a parallelogram in this case).
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rotated by
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right image
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φ

(a) φ

(b) φ
φ

Fig. 5.4 Mirror reflections and their rotations with relative angle: (a) 60° (b) 90° (corner reflector images).

A rotation determinant is +1, but a reflection determinant is –1. Reflected area or angle in Fig. 1.3 is negative.

 det R = det
cos sin

sin cos
= cos2

+ sin2
= +1 det = det

cos   sin

sin cos
= cos2 sin2

= 1

Determinants track the multiplication of matrices. The determinant of a product is a product of determinants.

det|M·N|= (det|M|)(det|N|)= det|N·M|

Thus, two reflections each with det| |=-1 form a product of det| 1 2|=(-1)(-1)=+1, that of a rotation. This

also shows a product of rotations cannot make a negative-det-matrix and so cannot be a reflection.
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Exercise Complete Fig. 5.1 to the game-over point where sequence ends without floor bounce.

Start at
(1.0,-1.0)

1.0

1.0

-1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2.0

-3.0

-4.0

-5.0

-6.0

Bang-1(01)

m2 Velocity axis
Vym2

m1 Velocity axis Vym1

Bang-2(12)

Bang-3(20)

Bang-4(12)

Bang-6(12)

8
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5
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 Gameover 1
(23 not physically possible
without 2nd floor bounce
since v2 is slower than v1.)
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22
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3

5

7
91113

15

17

19

21

22
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Chapter 6 Force and potential energy
Analysis of force is one of the trickier parts of Newtonian mechanics and one that Aristotle seems to

have not done so well. We, like Aristotle, feel we know force after being pushed and pulled around by it most

of our conscious lives. Aristotle related force directly to mass and its motion. If he ever wrote equations then,

perhaps, Aristotle’s equation would be F=Mv.

NOT! Mv is momentum, not force. Galileo and Newton seem to be among the first to realize that force

should be equated to a change in momentum. A famous equation F=Ma equates force to mass or inertia M

times acceleration a, the rate of change of velocity. (This is called Newton’s 2n d law or NEWTON-TWO.)

F =dt
dP
= Mdt

dV
= M a                 (6.0)

MBM force fields and potentials
Motion of m1 in Fig. 5.1b suggests a kinetic model and a potential force field. Boltzman used this to

derive gas force laws for volume, temperature, and pressure. As a big m1-ball squeezes space (volume) for a

tiny m2-ball in Fig. 6.1, the speed v2 and energy 1/2 m2v2
2
 of m2 increases. So does the momentum transfer

rate or bang-force on m1. Energy is related to temperature and bang-force is related to pressure. A furiously

bouncing m2 is like a single-atom gas getting hot when its Y-space is compressed as in Fig. 6.1b.

m1

Low energy
“Cool“

(a) Uncompressed
(Large Y-space)

Yy1=H-Y

High energy
“Hot“

(b) Compressed
(Small Y-space)

Y

m1

Small momentum transfer
               “Low pressure“

Big momentum transfer
          “High pressure“

V2 small V2 large

Fig. 6.1 Big mass-m1 ball feeling “force-field” or “pressure” of small ball rapidly bouncing to-and-fro.

A “double-whammy” hits the m1-ball as it closes in with velocity v1 toward m2 and the ceiling:

(1) Bang rate B with m2 increases with shrinking distance 2Y traveled by m2 back-and-forth to the ceiling.

(2) Increased velocity v2 (due to v1) increases momentum m2v2 and P transferred to m1 by each bang.

(3) Increased velocity v2 (due to v1) increases bang rate even more. It’s really a triple whammy!

If m1 is huge (say 1kg) compared to atom or molecule m2 (say (2/3)·10-27kg for an H-atom), the speed

v1 of the macro-mass m1 may be negligible compared to typical atomic speeds v2 of 103 m/s. Then we ignore

effects (2) and (3) due to tiny v1 in a so-called isothermal model. An adiabatic model includes them.
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Isothermal model force laws

Atom m2 in Fig. 6.1 travels distance 2Y back & forth between m1 and ceiling at Y for each bang m1. If

v1 is slow, the time t between bangs is 2Y divided by velocity v2 of m2. Bang rate B is the inverse: B=1/ t.

t = 2Y /v2 (bangs per sec) (6.1a) B =1/ t = v2 /2Y (seconds per bang) (6.1b)

Each head-on bang of big m1 on small m2 changes velocity of m2 from v2 to +v2
FIN as shown in Fig. 6.2.

(for: m1>>m2): v2
FIN = v2+2v1 (  v2 for: v2>>v1) (6.2)

Added speed for m2 is 2v1, twice that of incoming m1. (See V-V-plot Fig. 6.2 for large-m1.) The change P of

momentum m2v2 is the difference between FIN value +m2v2
FIN and IN value m2v2.

 P = (+m2v2
FIN)–( m2v2)=2m2v2+2m2v1 (  2m2v2 for: v2>>v1) (6.3)

So, if “atomic” velocity v2 is large compared to v1 it gives a bang-force F=B· P = P/ t on m1.

 BP= P/ t =F = 2m2v2(v2 /2Y) = m2v2
2
/Y (6.4)

So a force field F=2·KE/Y on m1 due to m2 is proportional to KE=1/2m2v2
2 or temperature T of m2. Boltzman’s

constant k of proportionality (KE=kT) gives an isothermal force law FY=2kT. It is a 1-D version of Boyle’s

ideal gas law: PV=2kT. Here a ceiling tries to keep energy or “temperature” of m2 constant in spite of m1.

Start at
(+v1,-v1)

(a) After 2 Bangs

Start at
(+v1,-v1)

v(1)

v(2)

(b) After 4 Bangs

v(3)

v(4)

V1  axis

V2
axis v(2)

v(1)

Increase
by
2 v1

Increase
by
2 v1

Double-Bang Sequences
for m1 >>m2

V1  axis

V2
axis

Fig. 6.2 Large mass-ratio (m1/m2>>1) bounce sequence. (Compare to Fig. 4.2a.)
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 Adiabatic force laws

An elastic ceiling can’t give or take energy so each m1 bang adds velocity 2v1 to v2 at rate B=v2 /2Y (6.1). As

m1 closes at speed v1 it reduces distance 2Y that m2 travels. So bang rate B grows due to more v2 and less Y.

   
dv2

dt
= 2v1B                        = 2v1

v2

2Y
,     y =v1t=H-Y,     

dy

dt
= v1 =

dY

dt
     (6.5a)

We cancel time and v1 to show this force is inverse-Y- cubed. That’s a lot “harder” than inverse-Y in (6.4).

   
dv2

dt
=

dY

dt

dv2

dY
= v1

dv2

dY
= 2v1

v2

2Y
,    

dv2

v2

=
dY

Y
,   v2 =

const.

Y
=

v2
INY (t=0)

Y
,      F=

m2v2
2

Y
=m2

const.( )
2

Y 3
(6.5b)

This is called an adiabatic or “fast” force law. Collisions are so fast that an isothermal-seeking “Robin

Hood” in the ceiling hasn’t time to steal m2’s energy when it’s judged too energy-rich or give energy back

when m2 becomes energy-poor. So m2 can get hotter and hit m1 harder and more often as gap Y shrinks.

Conservative forces and potential energy functions

Each force law (5.9) and (6.5) actually conserves the energy of the big-m1 ball in the long run. By that

we mean that m1 will come out with practically the same energy that it had when it went in.

The adiabatic case is easier to see. Each bang conserves energy as demanded by the kinetic energy

(KE) conservation relation (3.5a). Little-ball velocity v2=const./Y from (6.5b) is used here.

E =
1
2

m1v1
2

+
1
2

m2v2
2

=
1
2

m1v1
2

+
1
2

m2
const.

Y
 

 

 

 

2

=const. (6.6)

The first term is m1’s kinetic energy KE1. The second term, which is really m2’s kinetic energy, is called m1’s

potential energy PE1 or just plain PE, and it is labeled U(Y) since it varies according to height Y only.

E = KE1 + PE =
1
2

m1v1
2

+ U (Y )      where:   PE = U (Y ) =
1
2

m2
const.

Y
 

 

 

 

2

(6.7)

The PE is energy that m1 lends to m2 each time m1 moves a distance Y closer so m1 does a little bit of

work W on m2. Work is defined as force times distance. ( W=F· Y) Power, the rate of work done, is defined

as force times velocity. Here distance is a small Y and the force F in (6.5b) is m2 const.2/Y
3
. But “work” force

might be plus-or-minus (±)m2 const.2/Y
3
. Which sign? (+) or ( )? Conflicting sign conventions make force-

physics confusing. The sign depends on how force and direction are defined. (It’s all relative!)

Is it +or-? Physicist vs. mathematician and the 3rd law

A physicist’s force F
phys

 is what is felt by a free object (Here that’s m1.) whose motion is driven by

force field F=F
phys

. A mathematician’s force F
math

 is what is needed to hold back the object in the force field.

(How apropos! A physicist lets it go but a constipated mathematician holds it back!) They differ by (±) sign



©2008 W. G. Harter Chapter6. Force and Potential Energy 64

only, that is, Fmath =-Fphys, and Fmath is the equal-but-opposite force by an object (m1 here) on its field or force

agent(s) (m2 here). (This is essentially Newton’s 3rd law. (NEWTON-THREE) )

Force is momentum flow. Momentum is stuff that’s conserved, so the flow rate F
phys

 of this stuff

into an object m1 must be balanced by an equal-but-opposite negative flow, Fmath =-Fphys, out of the forcing

agent(s) (m2 here), and, vice versa, whatever flows out of m1 flows into m2. Momentum p=mv and force F are

both vector quantities and a ±sign gives direction to-or-fro, another confusing (±) sign to bother us. But,

whatever the flow rate Fphys seen by m1, then m2 sees the opposite rate Fmath =-Fphys.

Let’s define positive Y and F direction to be away from the ceiling in Fig. 6.1. So incoming m1 has

negative velocity v1=- Y/  t , but after m1 reverses V= Y/  t is positive. Positive V=-v1 (increasing Y) and

positive Fphys means both momentum and energy of m1 are being increased by force Fphys. Each bit of energy

or work W=Fphys Y gained by m1 is energy lost by the force-field’s potential “bank” that is m2. ( U=- W)

W =F phys Y =- U      where:  F phys
= F(Y )=m2

const.( )
2

Y 3
  (6.8)

In other words, power  =Fphys.V into m1 is power (- U/  t ) out of the field. (V= Y/  t is m1‘s velocity.)

 = F phys V = -
U
t

= -
U
Y

Y
t

= -
U
Y

V     where:  F phys
= -

U
Y

  (6.9)

But is this consistent? Does force Fphys in (6.8) really equal minus the slope of potential (6.7)? We check.

F phys
= m2

const.( )2

Y3       
consistent

with:
      F phys

= -
U
Y

= -
d

dY
1
2

m2
const.

Y
 

 

 

 

2

= m2
const.( )2

Y 3 (6.10)

Well,Yes!! Note that F=- U/  Y needs that 1/2 to be in kinetic energy 1/2 m2v2
2
. (See discussion of (3.5).)

Isothermal “Robin Hood”and “Fed rules”
The isothermal case is a weird one. The little “force-field agent” m2 maintains it kinetic energy at

around the same initial value 1/2 m2v2
2
 no matter how much the big mass m1 loses or gains kinetic energy.

It’s as though a “Robin-Hood” in the ceiling acts like a big Federal Reserve Bank. (“The Fed.”)

Whatever energy m2 earns from m1 over and above a some fixed deposit 
2
1 (m2v2

2
) is taken and stored away,

but if m2‘s deposits falls below that value, the Fed makes up the difference. This energy or deposit limit is

determined by a prevailing allowed “temperature” of the ceiling or the current money supply. (I’m not

making this up. It’s what happens in nature and very roughly what happens in our economy. It becomes a

problem if the Fed stops being Robin Hood and becomes robbing hood!)

Under ideal conditions, force agent m2 makes a much “softer” 1/Y force field F=m2v2
2
/Y given by

(5.9). Definition (6.9) of force F as negative-U-slope - U/  Y then gives a logeY=lnY potential.
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F phys
= m2

v2
2

Y
= -

U
Y

           implies:          U = -m2v2
2 ln Y( ) (6.11)

It may seem weird that we can define a useful potential while energy-funds are being siphoned in and

out. Nevertheless, the ceiling “Robin Hood” is true to his word. (Analogy with “The Fed” ends here!) He

puts back all the energy that m1 gave up to m2 (the potential U) on the way in, so that, except for small-

change or “tips” left with m2 after the final parting collision, m1 recovers the energy it originally had. Such a

force field, if determined by such a reliable potential, is also a conservative one. We discuss later the details of

what is needed for general multi-dimensional fields to be labeled conservative.

Oscillator force field and potential

Consider a mass m1 between two walls and two little speeding m2 masses as in Fig. 5.5. m1 feels a

force like that of an oscillator. As m1 moves distance x off center the left wall space expands to Y+x and the

right wall space shrinks to Y-x. Two opposing forces (6.11) then are unbalanced. (Only x2
, x

4
,… terms cancel.)

   Ftotal
=

f

1+ x

f

1 x
= f 1 x + x2 x3... f 1+ x + x2

+ x3... = 2 f ·x 2 f ·x3

Here we let Y=1 be a unit interval and assume an isothermal kinetic constant k 2 f = 2m2v2
2  for each side. For

small x (x<<1) the force Ftotal has a linear or Hooke’s law form, and the potential Utotal is quadratic.

 

Ftotal k·x =
U total

x  

U total 1

2
k·x2

= Ftotaldx    (6.12)

(Y-x)

m1

m1

(Y+x)
x

x=0
YY

x =0

x

Utotal(x)

Potential
Utotal

Ftotal(x)

Force
Ftotal

(a) Off center x>0: Negative restoring force

(b) Equilibrium x=0: Balanced

YY

Fig. 6.3 Oscillator force and potential (a) Off center with (-)force (b) On center at equilibrium.
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Harmonic oscillator forces and potentials are, perhaps, the most famous and useful ones in all of

physics and come up more often in this book than any other. Normally, they are introduced as a mass on a

spring, rubber band, or pendulum, only rarely (if ever) as three bouncy masses like Fig. 6.3. The 2nd most

useful field is probably the Coulomb potential U=-k/r and force F=k/r2. (See Ch. 7 for electrostatics and

Earth gravity, which also have oscillator potentials at their cores.) After that, the 2D Coulomb U=k·ln(r) and

F=k/r may be the next most useful field. (The latter is like (6.11). A pair of them underlies Fig. 6.3.)

You should be warned that an oscillator like Fig. 6.3 is not as simple as it might appear, and as we will

see, neither are springs, rubber bands, or pendulums. Also, balls bouncing against moving objects are

particularly dicey devices. A simple model with one ball and one oscillating wall is called a Fermi oscillator,

and is quite chaotic.  The thing in Fig. 6.3 can be even more devilish if m2 is not very small. Caveat emptor!

The simplest force field F=const.

We have mentioned power-law forces Fadiab=k/y3=ky-3 (6.5), FCoul=k/y2=ky-2, FisoT=k/y=ky-1 (6.4), and

lastly Fosc=-ky (6.12), but have forgotten the simplest, namely zero power law Fconst=k =ky0. This last one is

like a constant near-Earth-surface gravity force 
  
F =

 
y

U =mg =-m|g| on a mass m. ( (-) sign  for downward.)

Acceleration of gravity near Earth’s surface is nearly -10 meters per second per second and very nearly –9.8.

(g=-9.7997m/s2) All terrestrial objects experience this whether they are bundled together or not.

All power-law forces F=kyp have power-law potentials U=- F·dy=-kyp/(p+1), except for p=-1 where

FisoT=k/y has a logarithmic UisoT=-k ln(y). (6.11) Earth-surface potential
  
U = mgh  is linear in height y=h. This

we use to compute height of a superball toss by equating its floor level KE=1/2mV2 to maximum PE=mgh.

  
gh

max
=

2

1 V
floor
2 (6.13a)

  
V

floor
= 2gh

max
(6.13b)

Ejection height goes as the square of ejection velocity. A 3-fold velocity gain means 32=9-fold height gain.

Action is conserved (sort of)

It is remarkable that a bouncing mass has a physical property called action
   
S = P·dx  that is more or

less constant even if its position x momentum P and kinetic energy KE are driven crazy. Action is defined by

the area of a one-cycle loop swept out in a momentum vs position phase-plot (P vs x). That is analogous to an

energy or power-plot of force vs position (F vs x) whose loop area
   

F·dx  is work per cycle.

Conservation of momentum and conservation of energy are each a rigorously obeyed axiom or

theorem for an isolated classical system. However, conservation of action is “more or less” or “sort of” and

“it depends” for a driven system. The concept of action is both subtle and deep and it lies at the heart of

quantum theory for how we affect and are affected by the world around us.
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Here we use a geometric construction of a bouncing ball trajectory to quantify action conservation or

lack thereof. We suppose the little mass m2 is caught as before in Fig. 5.1 and Fig. 6.1 between a rock and a

hard place, that is, bouncing between a big mass m1 (moving in at a constant velocity v1= 1 from the left) and

a hard elastic wall. The big ball path is indicated in Fig. 6.4 by a line of slope=1= v1 that hits an initially fixed

m2 following a vertical line (slope=0=v2) that then gets knocked up to a line of slope=2=v2 (after Bang(1)).

Throughout the imagined collision sequence we suppose the ball is so much more massive that its change in

velocity is not noticeable. This is in spite of the fact that it is absorbing more and more momentum from the

little ball with each bang. (Surely something breaks eventually!)

Each time the small ball is banged elastically by the big one it picks up two more units of velocity that

it maintains, apart from change in sign, through its subsequent bang with the elastic wall. Each time it returns

for more, is banged again, and increases its speed by two units.

The horizontal dashed lines in Fig. 6.4 indicate the range x available to the small ball at each instant

of its bang with the wall. Note that the product of the range x and the speed v2 is a constant three units even

as spatial range x rapidly decreases and the velocity range v=2|v2| increases just as rapidly.

 x v2 =3.0 = x v/2

This is an example of conservation of action mentioned before. If we define the small ball’s “range of

velocity” by v=2|v2| then this relation takes the form of a weird kind of uncertainty relation, that is, it looks

like Heisenberg’s famous minimum uncertainty relation x p = =(constant) for position and momentum. It

happens that the two are related even though the constant used by Heisenberg is an unimaginably tiny Planck

constant ( ~10-34Js) compared to a constant 3.0 appearing above. (Ours has gadzillions of wave quanta!)

The geometry behind this relation is exposed in Fig. 6.4 (b). It is obtained by considering intersections

between lines of integral speeds or slopes v2 =±1, ±2, ±3, ±4, ±5, ±6, ±7,… that are relevant to the bang

sequence. They are also relevant to quantum theory where the speeds of a particle in a box are indeed

quantized to integers times a tiny number. (This is where that tiny  comes in.) That is simply a reflection

(pun intended) of the fact that mutually reflecting waves require that an integral (or half-integral) number of

the wavelengths fit perfectly between mirroring containment walls or cavities.

Now we might ask if the action area x v in Fig. 6.4c-e stays the same if the big-ball speed v1 varies.

Action variance was argued hotly by Einstein and the “quantum gang” at the1920 Solvay Conference. They

imagined a hotel chandelier being jerked up and down by a clerk upstairs. They concluded that if the clerk

could not detect the swinging pendulum phase, then he would only rarely change its action.

Action and its wiggly antics will be discussed later, particularly in Unit 2 and 3.
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Fig. 6.4 Bang sequence for small ball between big ball and wall. (a) Spacetime paths. (b) Geometry
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Monster mass M1 and Galilean symmetry (It’s deja vu all over, again.)

 “Monster mass” M1 bongs hapless m2-atoms in Fig. 6.4 using Galilean symmetry. To show symmetry we

imagine two head-on monster M1‘s going at ±V1=±1 in Fig. 6.5. A mirror image of Fig. 6.4 lies in extended m2-

path lines. The red paths of even integral velocity v2=0, ±2, ±4,… are copies of Fig. 6.4 paths. Odd integral

velocity v2=±1, ±3,… paths mesh with even ones to make a full grid. Any initial v2 between ±V1 has a path on

the grid. A blue path is drawn thru a series of bongs with v2=-0.2,+2.2,-4.2,+6.2,...in Fig. 6.5.
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v2=+1
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V1=+1 V1=-1

v2=-0.2

v2=+2.2

Fig. 6.5 Symmetric pair of head-on V1=±1 monster-m1-masses pong tiny-m2-atoms to higher speeds.

Monster M1/m2-ratios have simple V1-v2-plots shown in Fig. 6.6a. (Recall Fig. 6.2.) It simply adds 2V1

to incoming speed v2 of atom m2 and M1 bounces m2 out at that speed. Monster M1 is the COM and its path

bisects in-and-out paths as it balances vIN and vFIN paths of atom m2. (In its COM frame each bong is simply a

change of sign for velocity. Recall balance in Fig. 2.6.)

The geometry of adding slope 2V1 to speed v2 is shown if Fig. 6.6a. It is based on the unit square and

unit velocity V1=1. Incoming -vIN
2 is an altitude of a right triangle with vertical base V1=1, and it is reflected

thru the square diagonal to +vIN
2 then added to 2V1 to give sum vFIN

2=vIN
2+2V1 as long side of the triangle  with

right side vertical base V1=1 in Fig. 6.6a. The hypotenuse is the final path with final slope vFIN
2. Each m2-path

and slope originates at pt-B  or else pt-B+ ends of unit square base bisected by unit slope path of M1 at B0. Fig.

6.6.c shows quadrilateral B B+A+A  bisected by M1 path B0CA0. Similar triangles explain multiple coincidences.
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Fig. 6.6 Bisection geometry of Fig. 6.5.

Fig. 6.5 contains time plots for paths in different Galilean reference frames. An excerpt plot in Fig. 6.7a

shows how Fig. 6.4 (copied in Fig. 6.7b) appears to a frame traveling at V=1 with each velocity in Fig. 6.7b

reduced by V=1 in Fig. 6.7a. Also shown in Fig. 6.7a is the extension of lines connecting the two plots and

this highlight s this remarkable symmetry. All collision times in Fig. 6.7a match perfectly with ones in Fig.

6.7b though all velocities are shifted. This is as Galileo’s symmetry would have it.
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Fig. 6.7 (a) Galilean frame shift by frame velocity V=1 of collision sequence in Fig. 6.4 (shown in (b)).
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Chapter 7 Interaction Forces and Potentials in Collisions
Derivation of force field potentials in Ch. 6 used elementary bangs by tiny m2’s on a big M1. (Ch.5)

We predicted elementary bangs between a ball and floor, ceiling, or another ball without knowing potentials.

However, three (or more) objects having a ménage a trois are not so easy to predict, and outcomes of 3-body

interactions depend sensitively on whatever interaction potential or force law exists between participants.

Geometry of superball force law

When a superball or any elastic sphere hits the floor or ceiling it dents itself and, maybe it dents the

surface it’s hitting a little bit, too. But, if the floor, wall, or ceiling is much harder than the ball, we might

assume only the ball develops a “flat-tire” as shown in the Figure 7.1a below.

x 2R - x

R

r

(a) (b)

Fig. 7.1 Superball collides with solid wall. (a) “flat” (b) Saggital (“Bow”) mean geometry

The radius r of the ball’s “flat” is indicated by an altitude in Fig. 7.1b and is the geometric mean of the

depression distance x and the remainder 2R-x of the ball diameter. (Recall Fig. 1.4.8.)

  r = x 2R x)( )     2Rx    for :   x << R( ) (7.1a)

Solving approximately for depression x gives the Saggital (“bow”) formula. (It’s used for thin lenses.)

  x
r2

2R
       for:   x << R (7.1b)

How much force F(x) is needed to depress the ball by distance x?

The answer is, “It depends.” A hollow rubber ball or balloon with pressure differential P would push

back with a force equal to the product of pressure P and area of contact A= r2.

  Fballoon(x) = PA = P r2  2 PRx (7.2)

This is a linear force law like the gravity law (1.4.11) inside the Earth sketched in Fig. 1.4.12.

However, the pressure and force in a superball or any solid varies non-linearly with x. Even if force

varies only linearly with volume of the x-dent in Fig. 7.1b, it’s still non-linear in x.
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Volume(X) = r2dx0
X

= x 2R x( )dx0
X

                 = 2R xdx0
X x2dx0

X
= R X 2 X3

3

R X 2    for : X << R( )
4

3
R3    for : X = 2R( )

(7.4)

(Here we check that our integral gives the whole ball volume 4 r3/3 for x=2R. That’s the equivalent of

crushing the superball into a black hole (or black sheet). It’s likely to complain before we get that far!)

Dynamics of superball force: The Project-Ball story

One of the interesting things to come out of Project Ball was the superball’s peculiar force law

behavior. The USC mechanical engineering department took an interest in this crazy project when it showed

up on NBC News “Ray Duncan Reports.” They offered to measure the superball force curve on a precise

tension meter. But, that curve never worked. It didn’t predict the bounces the students were observing.

Nothing was making any sense even though we had a big analog computer working it all out.

That was a low point in the project. Even with all this fancy experiment, computers, and theory, I

looked like I didn’t know what the heck I was doing. So, what’s new? That’s science most of the time! But,

to make things worse we got kicked out of the Project Ballroom, the old basement Lab 69 that we’d squatted

in. It was up to be repainted so we had to drag all our stuff out of there and store it down the hall.

Well,  after that I had to do something with the students so I arranged for a visit to Whammo Mfg. Co.

in San Gabriel, California, where superballs and other goofy stuff was made. The Whammo man said maybe

we could talk business about selling our super-elastic effects as a toy. So, a day or so later, with $$-signs in

our eyes, we piled into our cars and drove down to the plant.

The trip to Whammo

By the time we got there, the inventors were on an all-day alpha-wave break. That’s a 60’s fad where

you try to increase your creativity by looking at your brain waves. I said, “Maybe, I could use some of that

stuff!” But, the company lawyer wanted to show us around. After awhile, he said he thought our invention

was cool, but its product liability potential looked too high to make a commercial toy.

We all must have looked pretty sad after hearing that. So he went in a back room and dragged out a big

collection of superballs that had been rejected for one reason or another. “Here, take as many as you want!”

We thanked him and loaded the balls into some boxes and headed back to USC.

When we got back to Rm 69, the painters were done but the paint wasn’t quite dry. So I said, ”Let’s

drop off our new balls so we’re ready for tomorrow.” The students took “drop” to mean literally and

dumped them out of the boxes into the empty room. Right away the balls bounced into the wet paint and

made lots of little polka-dot spots all over the floor and wall. What fun! What a mess.

Eureka! Polka-dots save Project Ball

But, suddenly, it occurred to me what was wrong with our force analysis and how we might fix it. The

engineers had carefully and slowly produced a static or isothermal force curve, but what we really needed

was a fast-response or adiabatic force curve. I thought, “Maybe that force law can be told by the polka-dots!”
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From a polka-dot radius r made by a superball of mass M and radius R dropped from a height h we could

relate gravitational potential energy Mgh to an adiabatic superball potential energy U, that is, find a U(x)

curve for each value of x=r2/2R in formula (7.1b) by plotting height h against x given by dot radius r. Then

the adiabatic force curve F(x) can be found from the slope dU(x)/dx of a U(x) curve.

Just as the adiabatic F=1/Y3 in (6.5) force curve is steeper and curvier than the isothermal F=1/Y in

(6.4) so was the polka-dot bounce curve steeper than what we had been using. We stuck our new F(x) on the

analog computer’s diode function generator and started getting good predictions. Now we could work out the

deadly Model-X3, a 3-ball super tower! (This is described Chapter 8.)

The “polka-dot” potential

First, let’s look carefully at this “polka-dot” potential theory. What we did, like most of physics, was

an approximation. Using gravitational potential to estimate superball U(x) is a neat trick only if the superball

forces are large and quick compared to the gravitational force or weight mg of the ball.

Fig. 7.2a shows a massive (Bowling-ball sized) superball at its (V=0) drop point h, where potential

energy is mgh. Kinetic energy rises from zero as the ball falls down until it passes a point where the upward

floor force cancels the ball’s downward weight mg. That point-xstatic of static equilibrium is at the bottom of

the total potential energy curve in Fig. 7.2b. The ball would sit still if put gently at xstatic with no kinetic

energy. It’s a point of zero slope since total force F(xstatic) is zero there.

After passing xstatic the ball slows down due to negative F(x< xstatic). Finally it will have to stop at its

maximum penetration point xmax where the energy line intersects the total potential line in Fig. 7.2c. Now the

ball’s gravity potential mg has been converted completely into potential energy U(xmax) (and frictional heat

that we’re ignoring) due to compressing rubber a distance xmax into the ball.

In the example, the ball’s weight is almost as large as the inertial bang-force driving the ball into the

floor. An indication of this is how flat the ball is in Fig. 7.2 b when its weight and compressive force are

equal. A standard superball sits stiffly on a table with no noticeable depression, and mg is a tiny part of the

total force, and because it’s so stiff, its bang force is hundreds of times its weight and lasts only a few

hundredths of a second. Very stiff rebounding potentials are shown in the later Fig. 7.3 and Fig. 7.4 b in

which gravity is a negligible force after such a stiff rebound begins.

By comparison, the ball in Fig. 7.2 is heavy and its potential is not so stiff. Instead it is so soft it has

a big “flat” if sits still with zero KE at xstatic just as it does when passing that point in Fig. 7.2 b. The collision

shown in Fig. 7.2 a-c is less like a bang and more like a lingering smooch! Similarly soft collision energy for a

linear rebound force and quadratic potential is shown in parts (d) and (e) of Fig. 7.4.
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Fig. 7.2 Details of ball hitting floor (a) Ball is dropped. (b) Ball at max speed. (c) Ball at low point.
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Force geometry: Work and impulse vs. energy and momentum

TV daredevils jump off 30-meter towers and belly-flop into kiddy-pools that are less than 1 meter

deep. What a way to earn a buck! And, how do they ever survive such stunts?

Two important physical quantities tell about survival chances. The first is the product F˙x of force-

times-distance, or, more precisely, the integral Fdx of force over distance. The second is the product F˙t of

force-times-time, or, more precisely, the integral Fdt of force over time. (Recall the fundamental Galileo-

Newton relations (3.10) and (6.0).)

The first quantity Fdx is work done or energy -U(x) acquired. U(x) is area under an -F vs. x plot.

Work = W = F (x) dx = Energy acquired = Area of F (x) = U (x) (7.5a)

If energy is stored as potential energy U(x), then force -F(x) is the slope of a U(x) plot at point x.

F(x) =
dU (x)

dx
(7.5b)

(Recall the discussion of force and potential leading up to (6.10).)

A second quantity Fdt is impulse done or momentum P(t) acquired and area under an F vs.t plot.

Impulse = P = F (t) dt = Momentum acquired = Area of F(t) = P( t) (7.5c)

If momentum is stored in kinetic velocity V(t)= P(t)/M then force F(t) is slope of the P(t) plot at time t.

F(t) =
dP(t)

dt
(7.5d)

The time equation (7.5c-d) is just Newton’s 2nd law first given by (6.0). The space force law (7.5a-b) is just

the slope rule first stated (with the physicist’s minus-sign) in (6.9). Both laws deal with conserved stuff. If

you, a daredevil, acquire x of this stuff (energy or momentum) sooner or later you are going to have to find

something or someone help you get rid of x. Or else!

A daredevil falling 30 meters acquires energy equal to gravity force (body weight Mg) times thirty

meters. Fig. 7.3a-b plots a constant F=-Mg and a linear potential U(y)=Mg y from y=30 to y=0. The 1m

kiddy-pool must get rid of the 30Mg (Newton meters) of energy in one meter, by applying a force of 30Mg

(Newtons) steadily over the entire meter from y=0 to y=-1. (That’s a 30g~300ms-2 deceleration. Human

survivability is somewhere around 50g.) An alternative is to get rid of that energy in the concrete below the

pool in about 1millimeter, a 30 thousand g deceleration. (That is not survivable!)

Kiddy-pool versus trampoline

Suppose the daredevil falls onto a special trampoline that applies exactly the same constant force as

the kiddy-pool, but stores the energy as potential instead of dissipating it all by dousing the audience with a

huge splash. The trampoline could then toss the daredevil back up to the 30 m tower to do the fall over again.

(My gosh! What a daredevil has to do to satisfy a sated TV audience these days!) Such a potential is plotted

by a steep-slope line U(y)=-30y in Fig. 7.3b.
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Fig. 7.3 Force and potential plots. (a-b) Strong (30g) deceleration. (c-d) Medium (6g) deceleration.

Suppose the Americans for Humane Daredevilry (AHD) demand that the deceleration distance be

increased from 1 meter to 5 meters. (That’s what Olympic divers get for a 10 m fall.) As shown in Fig. 7.3c

this reduces the deceleration by a factor of 5 from 30g to only 6g. (A walk in the park!)  The sloping U(x)

lines are tallying the area-accumulation under the F(x) lines. Starting on the right hand side, U(x) drops by 30

units in 30 meters in Fig. 7.3b to correspond to the –30 units of area under the gravitational F=-1 unit line for

the same distance in Fig. 7.3a. The daredevil’s kinetic energy must increase by 30 units to conserve total

energy. So trampoline or pool is hit at 24 meters per sec. or 55 mph. (Recall (6.13).)

  
1
/2 M V

2
=30 Mg or:  V= (60g) = 588=24.2m/sec.

Getting rid of this 30 J potential deficit means climbing a steep 30 J high slope between y=0 and -1 in Fig.

7.3b or a medium slope of the same height between y=0 and –5 in Fig. 7.3d. Both cases have the same +30 J

area under a force line, but having 5 meters instead of just one reduces the force to 30/5=6.

Time functions F(t) and MV(t)=P(t) relate to F(x) and U(x) using Newton II: F=M
dV/dt in (7.5d).

     U (x) = F(x)dx = M
dV

dt
dx = M

dx

dt
dV = MVdV =M

V 2

2
const.  or: M

V 2

2
+ U(x) = const. (7.6a)

        P(t) = F(t)dt = M
dV

dt
dt = MdV = MV + const.                   or: P(t) MV (t) = const. (7.6b)

The first relation is total energy conservation (KE+PE=const.) first stated in (6.6) and (6.7).
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Linear force law, again (But, with constant gravity, too)

Let’s imagine the AHD demands further protection of daredevils from themselves by outlawing constant-

force targets that turn on a full force suddenly upon entry. Claiming that “high-jerk” is bad, the AHD requires

linear-force targets, instead. Physicists comply happily since a harmonic-oscillator linear-force-quadratic-

potential (6.12) is the favorite force law. It also describes inside-Earth oscillation in Chapter 9.

Plots of linear-force-quadratic-potentials are shown in Fig. 7.4. Just like the preceding Fig. 7.3, a

constant gravitational force Fgrav=-Mg is present both in and out of the (y<0)-region where the linear F=-ky

force and the U(y)=1/2ky2 potential exist as a sum of constant and linear forces for (y<0).

 FTotal
= F grav

+ Ftarget
=

Mg       

Mg ky

y 0( )
y < 0( )

UTotal
=U grav

+Utarget
=

Mg y            

Mg y +
1

2
ky2

y 0( )
y < 0( )

(7.7a) (7.7b)

If a linear potential b·y is added to a quadratic a·y2 potential we get the same parabolic curve U=a·y2, but that

curve is shifted to the left by yshift=-b/2a and down by Ushift=-b2/4a as follows.

UTotal (y) = ay2
+ by = a y +

b

2a

 

 
 

 

 
 

2 b2

4a
= a y yshift( )

2
+ Ushift (7.8a)

yshift =
b

2a
,         Ushift =

b2

4a
= a

b

2a

 

 
 

 

 
 

2

= U yshift( ) (7.8b)

The nose or tip of the parabola, which is the equilibrium resting point, follows an upside-down copy of the

U-parabola itself! This important geometric fact is shown in Fig. 7.4. The geometry does not reveal itself

until we look in Fig. 7.4e at a “soft ball” that is soft enough to clearly show its gravitational shifts. A hard

superball is more like Fig. 7.4b that barely shows such a small shift.

Hardball total potential is u(y)=8y2+y with a total force function f(y)=-16y-1 in graph units of Fig.

7.4(a-b). A medium total potential is u(y)=y2+y with a total force function f(y)=-2y-1 is plotted in Fig. 7.4(c-

d). The latter clearly shows the equilibrium or lowest “sag” point of zero force. The softball total potential is

u(y)=(1/4)y2+y with a total force function f(y)=-(1/2)y-1 in Fig. 7.4e. The hardball potential requires about 6

meters (Y=-6 or y=-0.6) to cancel the energy from the 30 meter fall (from Y=30 or y=3) and maximum force

of about F=10. This is much more than the constant F=6 that stopped the same daredevil in 5 meters in Fig.

7.3c because a linear force has only the area under a triangle which has a factor of 1/2. Here 1/2(F=10)(Y=-6)

gives the necessary energy of 30 Joules. So the AHD ruling has actually increased the maximum force on the

daredevil! (But, only during the final milliseconds is F large.)

Note that the focus of the U(y) parabola is on the y-axis because we plot gravity with slope=1. Can

you find a geometrical a way to locate that focus given some allowed stopping distance?

Parabolic geometry of an oscillator potential subject to a uniform (or nearly uniform) force

field is an important one in physics. Electronic charges pinned to an atomic potential well behave like

oscillators in an electric field of a passing light wave. Generally the light wavelength of 0.5 micron (0.5E-6m)

is several thousand times as long as the atomic radius of a few Angstrom (1E-10m). So the effective potential

is a rigid parabola like Fig. 7.4e shifting to and fro and up and down at some frequency.
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Fig. 7.4 Linear deceleration force after constant falling force. (a-b) Hard (c-d) Medium (e)Soft

As mentioned before, a superball force function is non-linear and approximated by Fball(y)~y4 as

plotted in Fig. 7.2 and Fig. 7.5 below. Compare this to the linear balloon-like force curve Fballoon(y)~y1 in Fig.

7.4e above. (Recall (7.2).) Note that Fballoon(y) is a pair of straight lines bent at contact point y=0, while

Fball(y) has a long flat region below y=0. A flat in F(y) assures super-elastic bounce as we’ll see. For either

case, the force integrals Ftotal(y)dy and the areas they represent cancel between any two points y=h and
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y=ymax that have the same potential energy U(h)=E=U(ymax). If that energy is the total energy E then these

points y=h and y=ymax are the classical turning points where the mass M stops with zero KE and zero speed

to turn around and fall backward or forward, respectively, into the potential valley in between the turning

points. This is a common feature of most oscillatory motion or vibration.

Utotal(y)=-Mgx+Uball(y)

Total Energy E=Mgh

Ftotal(y)=-Mg+Fball(y)

Ftotal(h)

y=hystaticymax

-Mg

Force F(x)
and
Potential U(x)
for soft heavy
non-linear
superball

Utotal(ymax)=  Ftotal(y) dy +
ymax

ystatic

 Ftotal(y) dy +U(h)  =  U(h) =E
ystatic

y=h

(+)

(-)
F areas
cancel

y

h

Fig. 7.5 Force and potential for soft nonlinear (F=ky4) superball dropped from height h

Why super-elastic bounce?

Super-elastic bounce involving two balls was introduced way back in Fig. 4.5 and “explained” by the

2-Bang model sketched there. Is that the only explanation? Certainly not! Is it even right? Well, yes and no.

Here is a chance to discuss how science works or doesn’t work. It is, after all, a human endeavor. (To err is…)

RumpCo versus Crap Corp

Let’s imagine a big scientific fight between two research groups something like real ones I’ve seen.

We’ll imagine it’s about superball dynamics. On one side is a small but creative group working for the

Rumpany Company® that first discovers the effect and explains it with the 2-Bang model. But their small

budget limits them to things you can do cheaply with a ruler and compass.

On the other side is the huge Crap Corporation®. With unlimited military contracts, CrapCorp can afford

any kind of computer or lab equipment. They hear about RumpCo’s discovery and decide to develop and sell

it to the Army as a bomb detonation system.

I hope you’ll excuse a scatological nomenclature and contempt for shortsighted and mindless goals

often associated with post-modern cash-flow-science. My allegorical objective is to encourage curiosity-

driven-science that is now becoming regarded as quaint. I do believe that humans are capable of creating much

more than fertilizer and should be strongly encouraged to do better. If earning gets in the way of learning, then

humans do poorly. I have watched big labs in government, industry, and university die of a pernicious

groupthink fueled by the acquisitive rather than the inquisitive human drives. People lose ability to reflect
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and become happy to merely genuflect. A novel Radiance by Carter Scholz (Picador 2002) is a “Star Wars”

romaine a’clef exposing foibles of scientists at Livermore and Los Alamos.

On one side of our allegory is poor but resourceful little RumpCo full of ideas but nowhere to go. Their

2-Bang model of super-elastic bounce is simple, elegant, but appears wrong. The powerful CrapCorp, on the

other hand, knows where it’s going and what’s right. It has every resource imaginable. Except wisdom.

CrapCorp’s first move is to discredit RumpCo’s work. They set up a computer that uses lab observed

potential functions to fully analyze a 2-ball bounce. Let’s compare two competing vu-graphs side-by-side.

RumpCo�
Project Ball�
2-Bang Model�

m1

m2

m1

m2

m1

m2

Bang 1

Bang 2

V2=2.5�
V1=0.5

m1

m2

Finite�
initial�
gap

 

CrapCorp�
Star Wars  Division�
Super Elastic Bounce�
Full Force Field Simulation�

m1

m2

m1 m1

m2

m1

m2

Continuous Bounce
Sequence

m2 m1

m2

m2

m1

m2

m1

Velocity 1

Velocity 2
m2

m1

V2 = 2.291472855

V1 = 0.61730277

NO�
initial�
gap

Fig. 7.6 RumpCo theory versus CrapCorp’s simulation. (RumpCo) Finite initial gap (CrapCorp) NO gap

One thing is clear. CrapCorp does fancy-schmancy vu-graphs! They resemble wedding invitations.

And, while CrapCorp’s 10-figure precision is dubious, we note their V1=0.62  and V2=2.29  disagree with

RumpCo’s predictions (Recall Fig. 4.4.) of final V1=0.5 and V2=2.5 by a little. Furthermore, RumpCo uses an

independent 2-ball bang model. They assume or idealize an initial gap separating mass m1 from m2 so Bang-1

of m1 with the floor is independent of Bang-2 between m1 and m2. So V1 and V2 result from 2-body energy-

momentum conservation. RumpCo’s results are not sensitive to force functions.

CrapCorp can compute the difficult 3-body collision between m2 , m1, and m0 (the Earth) all together

just like what’s really happening on the floor. CrapCorp ‘s curvy V1 vs. V2 plot in Fig. 7.6 is very sensitive to

each force function F(y) between each pair of colliding bodies. When (and if) CrapCorp values check out with

experiment, they’ll happily sneer at the primitive pair of straight lines in the RumpCo velocity plot.

Does RumpCo have nearly the right (V1,V2) for wrong reasons? Not entirely. The reason a 2-Bang

model works at all is that the force function for these balls is highly non-linear. A quartic function F(y)=y4 has
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a flat bottom as noted before Fig. 7.5. That allows the floor-m1 collision to nearly finish before the m1-m2

bang really gets going.

Realizing this, the RumpCo researchers suggest that CrapCorp try a linear force F(y)=y1 simulation to

see if super-elastic bounce disappears. They do, it does, and the rest is history. As seen in Fig. 7.7, m1 and m2

bounce up in unison. It’s a pax de deux. Super-elastic bounce goes away!
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F(y)=y2

y

y

F(y)=y1

F(y)=y4

y

Quartic

Quadratic

Linear�
Force

Fig. 7.7 Linear force kills super-elastic bounce. (Collaborative effort.)

The two groups decide to stop feuding and join forces. A corporate merger results in a multi-national

conglomerate Carumpany Ltd. based in the Caymans. They lived happily ever after. (Sort of.)

Seatbelts and buckboards

Another important physics lesson from this section is, “Fasten your seatbelts…tightly!” To avoid great and

damaging force you need to avoid non-linear force functions and fasten yourself with linear ones that can start

working off your kinetic energy and momentum most immediately after a collision. The non-linear force with

its “flat” region applies little or no force at first but then has to make up for its procrastination with deadly

high force after it’s too late. Note how nonlinear force in Fig. 7.5 finishes much higher than the linear force in

Fig. 7.4. Even worse is having no seatbelt at all. That’s like a very non-linear force of, say, F(x)=kx100. It’s a

flat gap with a practically vertical wall waiting to crush you!

One of the most dangerous vehicles in the Wild West of the early US was the buckboard, a wagon

with no suspension except for a set of springs right under the rider’s seat. When the buckboard hit a bump it

generally lived up to its name. Unfortunate riders ended up like a little m1 superball knocked skyward by a

big m2 wagon. A safer and more comfortable ride is had in a car with a body as much heavier than the wheels

and suspension as possible. Monster trucks have the worst kind of ratio possible for stability.
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Friction and all that “dirty” stuff

Slowly we have put back some of the “real-world” features of the superball collisions that our

idealized “Bang-Bang” models of Ch.4 ignored in order to make the problems more easily solvable. The

effects of gravity during collision have been introduced and applied to interacting zero-gap superballs.

More such effects will be studied in what follows since interacting linear forces are very common in nature

and there are ways to make them easily solvable, too. The oscillating neutron star in Ch. 9 provides a taste of

what is to come in the study of waves and oscillation in Unit 3.

But even the neutron star model neglects what is the bane of the purist physicist, the dreaded

frictional forces. These are among the most neglected and poorly treated physical effects in physics. If

anything goes wrong with a theory, we just blame it on friction! Often we have little choice in this matter.

Friction is a result of having more particles than we’d like to admit. Consider one m1=72 gram

superball. That’s about a mole of Carbon C6 rings and a mole has 6.02E23 (That’s Avogodro’s number.) of

these C6 molecules. So we’re dealing with not one mass m1 particle but an enormous heap with an

unimaginably huge number 60,200,000,000,0000,000,000,000 of particles that individually are (mostly)

friction-free and well behaved, but their mob-behavior is just plain abominable!

You’ve got to get down to at least the individual molecular level before “internal-friction” is pretty

much a non-existent phenomena due to quantum mechanics. So what we call “frictional loss” is simply poor

accounting of 60.2 gazillion chiseling thieves stealing bits of energy that turn up later as “heat.” In

conservative economics the effect is known as “supply side” or “trickle-down.” Let’s see if we can account

for energy chiseled by just three thieves. (And, then we’ll hire more thieves until we bankrupt the whole

operation!)
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Chapter 8 N-Body Collisions: Two s company but three s a crowd
Without knowing force and potential effects on superball collisions, it is often impossible to even

approximately predict the outcome for N=3, 4, or more balls. But, if all N masses have independent one-on-

one collisions with the floor, the ceiling, and each other, prediction can be done “Bang-by-Bang” as in Ch.5.

Difficulty arises when three or more collide at once. Then prediction may need precise and detailed treatment

of their interactive force laws. Elastic binary or one-on-one collisions in one dimension are solved completely

by momentum conservation alone as we’ve done since Ch. 4. But, as we’ll see, anything more complicated

may require more work, and often it requires a lot more work!

The X3: Three-ball towers

One of the goals of Project Ball at USC was to optimize final velocity for superball towers with three

or more balls stacked up like a pyramid as in a multi-stage rocket. One dumb idea was a cheap satellite

launcher. It’s dumb because, even if you could achieve 8 km/s (See discussion in Ch. 9.), you’d burn it up in

the atmosphere. (Well, OK, but on the moon…?)

Actually we were happy just to break the theoretical 2-ball limit of 3.0-times-initial. (Recall

discussion of the INF limit in and after Fig. 4.5.) As seen in Fig. 8.1a that is done quite easily by a 3-stage

tower which achieves a velocity that is V3=3.41 times initial drop-speed (Vn(0)=1 for n=1,2,3).

An even better final speed of V3=3.62 is had in independent collisions caused by setting initial gaps

between the falling balls as shown in Fig. 8.1(b) so each collision can be completed before the next one begins.

Then the result becomes independent of the force law governing the detailed trajectory within each collision,

and a geometric construction in Fig. 8.1(b), based on momentum conservation, finds velocity accurately if

collisions are independent. This requires force non-linearity or large initial gaps that are enough to reduce or

eliminate N-body contact effects for N>2.

Conversely, zero initial gaps often reduce the final velocity maximum below independent collision

values. This is particularly true if the force law is linear as shown in Fig. 8.1(c). The 3-ball linear case comes

out very much like the linear case for a 2-ball tower in Fig. 7.7. No single mass gains much speed over its

neighbors. Super-elastic bounce is essentially squelched.

The American Journal of Physics† paper produced by Project Ball contains a discussion of attempts

to optimize super-elastic bounce in towers of 3 or 4 balls. Progress was made but the theory needs work. As

we will see later, this dynamics is somewhat analogous to wave motion in a varying channel. An early AJP

paper†† has an analogy between a trumpet and a chain of sliding balls whose masses increase geometrically.

It’s also analogous to tsunami wave build-up. A rule-of-thumb is that optimum-velocity chains satisfy a

geometric-mean mass relation m2= ( m1 m3) as is approximately so in Fig. 8.1. Later on, some of this

technology was developed into a toy by Stirling Colgate  (astrophysicist and toothpaste heir) and company.
† Class of WGH, Am. J. Phys. 39, 656 (1971).

†† J. B. Hart and R. B. Herrmann Am. J. Phys. 36, 46 (1968).
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Fig. 8.1 Dropped 3-ball tower. (a) Quartic force (b) Independent (Finite gap) (c) Linear force.
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Geometric properties of N-stage collisions

The 3-stage collision construction in Fig. 8.1b uses earlier construction of Fig. 4.4. It begins after the

lowest mass m1=100 has rebounded from the floor to the Bang(2)12 START point (V1=1,V2=-1) where it

meets mass m2=30 and bangs up to Bang(2)12 END point (V1=0.77,V2=2.1) on a slope 100/30 line.

The second velocity (V2=2.1) of mass m2=30 is then transferred (See gray arrows.) to the first component of

Bang(3)23 START point (V2=2.1,V3=-1). There m2 meets mass m3=10 and bangs it up to Bang(3)23 END

point (V2=0.54,V3=3.62) on a slope 30/10 line, giving final top m3 velocity V3=3.62.

A 4-stage collision tower sequence with nearly the same mass ratios is constructed in Fig. 8.2(a). Here

each mass m1, m2, and m3, is exactly 3-times the one above it, and the top mass m4 gets the biggest boost of

nearly 5.8. Recall Maximum Energy Transfer (MET) case in Fig. 4.5 where a mass ratio of three (m1/m2=3)

leaves the lowest ball stopped (V1=0). In Fig. 8.1b m1 is nearly stopped. (V1=0.077).

The same arrangement with a higher mass ratio mk/mk+1=7 is constructed in Fig. 8.2b. Here the top

mass m4 gets a boost of over 9.0. That is a kinetic energy boost factor of (V4)
2=81 and an altitude bounce of

four or five hundred feet if dropped from arm’s length. (Friction is being seriously neglected!)

Supernovae super-duper-elastic bounce (SSDEB)

Imagine dropping two towers like the ones in Fig. 8.2a-b from either side of a tunnel through the Earth

so the two lowest m1-masses run into each other at the center. If the resulting collisions were elastic, they

could send the other masses to infinity with energy to spare! Later we see escape from Earth’s surface takes

only three times the energy it takes to sit there. (Starlet escapes!) Energy factors for a conservative 3:1-tower

are 22=4, 3.52=12.3, and 5.82=34.8 and more than enough for a free ride to kingdom come. Astrophysical

modeling of Type-II supernovae reveals just such a high speed SSDEB when a star, like a spherical layer-cake

with lighter elements above heavier ones, collapses. Boom! It appears that most of our bodily stuff has come

along on such a ride! As Carl Sagan remarked, we are of blown-up stars.

Newton’s balls

Novelty stores have simple examples of multistage collisions made by hanging identical ball bearings

in line as sketched in Fig. 8.2c-d. These are also common lecture demos, and they have been called “Newton’s

balls” to elicit giggles from otherwise boring lectures.

Few teachers explain the details of the cool pop-up-single in Fig. 8.2d. In fact, it won’t work unless

all the collisions are independent, and this requires non-linearity of the sphere-on-sphere force function, as we

saw in Fig. 8.1. Cooler still, is an elastic 4-ball column-bounce in Fig. 8.3c. N-balls need N(N+1)/2(=10 if

N=4) independent bangs to get all N balls back with the same speed. Given this, it seems a wonder that solid

objects can bounce elastically. (In fact, they cannot, quite!)
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Fig. 8.2  4-ball towers. Mass-ratios mk/mk+1 (a) 3, (b) 7,  (c-d) 1. Independent bangs needed for all.
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Friction, again: Inelastic energy-momentum quadratic equations

Perhaps, you noticed that FINAL velocity values could be found from INITIAL values by two

different ways. Back in Fig. 2.1 we noted an easy way using a momentum conserving straight line and a circle

through VCOM from vIN to the answer vFIN. But, Fig. 3.1 showed another way using an energy-conserving

ellipse to connect vIN to the answer vFIN. The first way uses simple linear equations and the second way uses

more complex quadratic equations.

Why are there two ways? Often this means that situations exist where both are needed. Here friction

or inelastic collisions makr total kinetic energy decrease. (Recall our 60.2-gazillion thieves? They’re baa-ck!)

Such a situation is plotted in Fig. 8.3b with the energy decrease indicated by a smaller ellipse inside the initial

ellipse in Fig. 8.3a. This similar to an earlier Fig. 3.2.

The idea is that momentum conservation is still true even if the two masses are exerting sticky,

energy-wasteful, forces on each other. No matter how wasteful those inter-particle forces may be, they still

must obey Newton’s 3rd axiom demanding equal-and-opposite forces on each other. So the final answer for

vFIN must be at an intersection of the old momentum line with a new and smaller ellipse.

However, intersecting an ellipse and a line uses a quadratic equation. And, in Fig. 8.3, there appear

two solutions to the quadratic equation. One uFIN we want is near the old energy-conserving vFIN. But, the

other one that we now don’t want is a uIN, which is nearer to the old vIN.

Let’s look at a quadratic equation for u1
FIN. There are two given constants KE(u) and MVCOM.

     m1u1 + m2u2 = MV COM
= pu = const . (8.1)
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2
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2
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= KE (u) = ku (8.2)

The COM momentum pu in (8.1) is a constant during the entire collision. Not so for the kinetic energy ku in

(8.2). It’s just a given loss parameter that is quite difficult to predict. We first solve pu for u2.

u2 =
pu m1u1
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(8.4a)

Then we insert the u2 result into ku equation (8.2) to get the needed quadratic equation for just u1.
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The solution isn’t pretty but its ± gives both u1
FIN and u1

IN shown in Fig. 8.3b.
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The unwanted (+) solution u1
IN (given that we started with v1

IN) means the two balls “wiffle” through each

other. In classical physics, only u1
FIN makes sense starting with v1

IN and only u1
IN makes sense starting with

v1
FIN. In quantum theory, masses can “wiffle.” Then both solutions make sense (sort of).
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Fig. 8.3 KE-Ellipse shrinks by frictional loss. (a) Elastic (No loss). (b) Inelastic. (c) Totally inelastic.
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Geometric construction of elastic and inelastic energy ellipses

Can you do quadratic solutions (8.5) with a ruler and compass? At first this seems difficult, but the

energy ellipse construction in Fig. 3.5 and geo-mean square root construction in Fig. 1.8 can be used.

As shown in Fig. 3.6, an ellipse has two radii, a major radius a giving x-coordinate x=acos , and a

minor radius b giving y-coordinate y=bsin . The Cartesian ellipse equation (3.7) is satisfied by these x and y,

and polar angle parameter  is eliminated. (x and y may switch places.)

x2

a2
+

y2

b2
= 1 =

m1

2 KE
V1( )

2
+

m2

2 KE
V2( )

2
(3.7)repeated

Velocity values x=V1 and y=V2 have equal magnitude for initial Bang(0) (V1=-V
IN

, V2=-V
IN

) or Bang(1) (V
IN

,-V
IN

), and

for a totally inelastic final state (V1=V
COM

, V2=V
COM

). The geometry needed to solve for the initial elliptic radii

(a
IN

, b
IN

) in Fig. 8.3a or totally inelastic radii (aCOM
, b

COM
) in Fig 8.3c is described in Fig. 8.4. Then an energy

ellipse in (V1, V2)–space such as sketched in Fig. 8.3b may be constructed for any radii (aFIN
R, b

FIN
R) where the

energy retention ratio R= KEFIN/ KEIN ranges from R=1 down to Rmin=(aCOM/a)2=(bCOM/b)2 as (aFIN
, b

FIN
) range

from initial radii (aIN
, b

IN
) to totally inelastic (aCOM

, b
COM

) at the lowest KE allowed by momentum conservation.

The roots (8.5) are two points where energy ellipse and momentum line intersect. For totally inelastic

collision they coalesce and the momentum line is tangent at (VCOM
, V

COM
) as in Fig. 8.3c. The slope m1/m2=a2/b2

of the momentum line is fixed no matter how much energy is wasted. So is ellipse aspect ratio a/b= (m1/m2).

Square root construction (from Fig. 1.8) finds a/b from a2/b2 in Fig. 8.4a-c.

The construction begins by boxing the momentum line in the 1st quadrant and doubling it using a semi-

circular arc around its upper left hand corner. An extended box including the arc is drawn in Fig. 8.4b. The

center of the extended box is the center of a second arc that finds the square root (m1/m2) of the momentum

line slope in Fig. 8.4c that is the desired ellipse aspect ratio a/b of all possible energy ellipses for the masses

m1 and m2. The basis of this construction is the mean geometry of Fig. 1.8.

Location of radii aCOM and bCOM in Fig. 8.4d uses vertical and horizontal projections of pt-(V
COM

, V
COM

) to

the ( (m1/m2)=a/b)-line. This is helped by the fact that pt-(V
COM

, V
COM

) lies on the ellipse and on the 45° line so

that its x-coordinate (x=acos ) and y-coordinate (y=bsin ) are equal. Thus angle parameter is tan-1a/b= , the

a/b line slope. So x and y projections of (VCOM
, V

COM
) onto the line yield hypotenuse lengths aCOM and bCOM in

Fig. 8.4d. Concentric circles of radii aCOM and bCOM let us construct the ellipse as in Fig. 3.5.

Initial pt-(V
IN

, V
IN

) gives initial elliptic radii aIN
 and bIN in Fig. 8.4e. Square-radii ratio (aCOM

/ a
IN

)
2
=(b

COM
/b

IN
)
2

or ratio (a
COM

b
COM)/(aIN

 b
IN) of the two ellipse areas lets us find the lowest possible kinetic energy retention ratio

Rmin. You should prove (geometrically and algebraically) that minimum ratio is given as follows.

Rmin =
V COM

V IN
=

m1 m2

m1 + m2

(8.6a) 
m2

m1

=
V IN V COM

V IN
+V COM

=
1 Rmin

1+ Rmin

(8.6b)
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V1

V2

VCOM

m2

m1

vIN

V1

V2

VCOM

m2

m1

vIN

V1

V2

m2

m1

m2

m1

V1

V2

VCOM

m2

m1

m1

m2

m1

(a) Draw m2:m1 box

in 1st quadrant

(b) Using m2  arc

 copy m2:m1 box

into 2nd quadrant

Draw extended
(2m2 :m1+m2 )

box

(c) Locate
center of
extended box
and draw arc
from its top
to top of
m2:m1 box.

This locates
m2 m1 slope.

(d) Projections from VCOM

to m2 m1 line

give COM-ellipse radii
    aCOM and bCOM

(e) Projections from vIN

     to m2 m1 line

give IN-ellipse radii
    aIN and bIN

aCOM

bCOM

bIN

aIN

vIN

COM-ellipse

IN-ellipse

COM-ellipse

VCOM

vIN

Fig. 8.4 Energy ellipse geometry. (a-c) Axes ratio m2: m1. (d) aCOM and bCOM. (e) aIN and bIN.
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Ka-Runch-Ka-Runch-Ka-Runch-Ka-Runch-…:Inelastic pile-ups

N-body collisions described so far have been mostly elastic. That’s not true for California freeway pile-ups.

California pile-up chains start when a cell-phony driver enters a fog at 60 mph and rear-ends a vehicle or

vehicles that have slowed down or stopped. Cars drive bumper-to-bumper so dozens may be involved.

Pile-up mass grows with each car added to it by a series of inelastic “Ka-runch” collisions like Fig. 2.1

of Ch. 2. Cars may be added to a pile-up’s rear or to its front or even to both ends. Fig. 8.5 shows a single 60

mph car piling up a line of five stationary cars and, vice versa, Fig. 8.6 shows a line of five 60 mph cars piling

up on a single stationary car. Each pile-up collision loses as much energy as it can while keeping momentum

constant. It makes the smallest ellipse that touches the momentum line in Fig. 3.2c and Fig. 8.3c.

In each case the sequence of velocity-velocity slopes is an arithmetic progression 1:1, 2:1, 3:1, 4:1,…

similar to velocity sequences in Fig. 6.4 and Fig. 6.5. Both have lines that intersect on a single point and

inverse or complimentary slope sequence 1/1, 1/2, 1/3, 1/4,…, known as a harmonic progression.

The incoming car in Fig. 8.5 has momentum PIN=mv=60 and energy KEIN=
 2
1 mv2=1800 with v=vIN=60.

The final pile-up mass M=6 has the same momentum PFIN=MV=60 but reduced velocity V=vFIN=10 and energy

KEFIN=
 2
1 MV2=300 down by 1500 units. (These are (very) Old English units. We take unit mass (m=1) cars.)

The incoming cars in Fig. 8.6 together have momentum PIN=5mv=300 and energy KEIN=5
 2
1 mv2=9000.

The final pile-up mass M=6 has the same momentum PFIN=MV=300 with increased velocity V=vFIN=50 but

reduced energy KEIN=
 2
1 MV2=7500. The same energy deficit of 1500 units is seen in Fig. 8.5 and Fig. 8.6.

Of these two equal-energy-loss nightmares the latter is worse since it began with five times the kinetic

energy and still has 7500 units to dissipate. Worse nightmares combine the two as shown in Fig. 8.7. This a

particularly troubling set of nightmares since there are many possible outcomes that have different orders of

combination with differing results.
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Fig. 8.5 Pile-up due to one 60 mph car hitting stationary line of five cars
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 Fig. 8.6 Pile-up due to a line of five 60 mph cars hitting one stationary car
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Fig. 8.7 A worse nightmare: Line of five 60 mph cars hitting five stationary cars.
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Ka-pow-Ka-pow-Ka-pow-Ka-pow-…:Rocket science

An N-body model of rocket propulsion can be made by “time-reversing” pile-ups. Let us imagine a line of

N=11 equal (m=1)-masses separated by explosive charges that go “pow!” in just the right sequence to blow

one fuel-pellet at a time backwards off the rear end of a rocket and propel the remaining rocket mass forward.

Fig. 8.8 is a velocity-velocity plot of seven such “pow!”-blasts after which a rocket with just three

masses numbered 8, 9, and 10 speeds off the page to the right. Presumably, the payload of this rocket is in

the ball labeled 10 at the head of the line. For N=11 balls, there are ten pow(b)-blasts numbered by b=0 to 9.

The velocity unit in Fig. 8.8 is the relative exhaust velocity ve=-1 of each pow(b)-blast. The 0th-blast

at the bottom of Fig. 8.8a starts with eleven stationary balls and blows ball-0 away from the line of ten balls

1-2-3…8-9-10. To conserve momentum (initially zero) the 10-ball rocket of mass (M=10m=10) has final

velocity VM=+1/10 to cancel momentum P0=m· v0=-1 of fuel-pellet ball-0 in a zero-sum pow(0)-blast.

m· v0+10m· VM(0)=0 (8.7a)

The 0th-blast line begins at the origin (VM=0,ve=0) of the VM-ve-plot in Fig. 8.8b and extends one unit

down and 1/10th unit right to point (VM(0)=1/10,ve=-1). Pow(0)-line slope is mass ratio (-m/M=-1/10). It is a

COM line of a time reversed totally inelastic collision, a super-elastic collision.

The 0th,1st,2n d,3rd,…, or 9th blast blows off fuel pellet-ball b=0, 1, 2, 3…, or 9, respectively. Each blast

gives a larger rocket velocity boost VM(1)=1/9, VM(2)=1/8, VM(3)=1/7… VM(b)=1/(10-b) since rocket mass

is less by m=1 after each blast but the exhaust momentum impulse m· ve=-1 is the same each time.

m· v1+9m· VM(1)=0 m· v2+8m· VM(2)=0 …   m· vb+(10-b)m· VM(b)=0 (8.7b)

The harmonic progression 1/10,1/9,1/8…1/5,1/4,1/3,1/2,1 in Fig. 8.8a contains momentum impulse

terms VM(b) in a 10-term harmonic series 1/10+1/9+1/8…1/5+1/4+1/3+1/2+1. Rocket velocity after its bth

pow(b)-blast is a partial sum of the first b+1 harmonic terms. The (VM ,ve)-plots in Fig. 8.8b show this.

0th: V(0)=1/10=0.1  1st: V(1)=1/10+1/9=0.211 2n d: V(2)=1/10+1/9+1/8=0.336

3rd: V(3)=V(2)+1/7=0.478 4th: V(4)=V(3)+1/6=0.646 5th: V(5)=V(4)+1/5=0.846

6th: V(6)=V(5)+1/4=1.096 7th: V(7)= V(6)+1/3=1.429 8th: V(8)=V(7)+1/2=1.929

On its 9th and final pow(9) the rocket is boosted by a whole unit exhaust velocity to V(9)=V(8)+1=2.929.

A 10-blast rocket exceeds exhaust velocity (|ve|=1) on its 6th pow(6)-blast with V(6)=1.096. This is

plotted on the extreme lower right hand side of Fig. 8.8b. The COM frame sees exhaust mass 6 thru 9 moving

forward but the rocket sees each exhaust mass leave it moving backward at exactly ve=-1 until it gets another

blast-boost. Finally exhaust masses numbered 0-9 separate from each other and from payload mass-10. Total

COM momentum is always zero, and so all eleven balls always “balance” on the COM origin.

N-blast velocity is a logarithm function if N is large. Momentum is still conserved for each blast.

M· V=-ve· M   becomes:  M·dV=-ve·dM or: dV = ve  M
dM (8.8a)

We integrate this from initial rocket mass MIN to final payload MFIN and from rocket VIN to final VFIN.

dV
VIN

VFIN = ve  M
dM

VIN

MFIN  becomes:  VFIN VIN = ve ln MFIN ln MIN =ve ln
MFIN

MIN  (8.8b)

This is the famous rocket equation. It gives discouraging predictions for interstellar travel. (See exercises.)
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Chapter 9 Geometry and physics of common potential fields
Physical and geometric aspects of elementary force and potential fields are introduced in this section. The

two most important are the oscillator and Coulomb fields that will later occupy Units 2 and 3.

Geometric multiplication and power sequences
The most common power-law potentials are U(x) = Ax2 (Oscillator potential) in Fig. 9.1, U(x) = Ax

(Uniform field potential) , and U(x) = Ax-1 (Coulomb potential) shown later. Power-law potentials and their

force laws have simple geometric constructions. Exponential or logarithmic fields (shown later) do not.

Multiplicative power operations are done using a staircase of similar triangles as shown in Fig. 9.2. A

geometric progression {1=s0, s=s1, s2, s3,…} and an inverse progression {1=s0, 1/s=s-1, s-2, s-3,…} lie on either

side of the unit stair step 1=s0. A slope or scale factor s=2 or s=1/2 is used in Fig. 9.2a or Fig. 9.2b. They

resemble perspective drawings of school hallways. (Elementary School is (a) and High School is (b).) Each

stair zigzags between slope-1 line-(y=x) and slope-s line-(y=s·x) or between line-(y=-x) and line-(y=x/s). The

line-(y=s·x) and line-( y=x/s) are perpendicular or normal to each other. So are line-(y=x) and line-(y=-x).

A two-step triangle in Fig. 9.1a gives each point on the oscillator potential, a parabola y=x2. To find

where the parabola hits vertical line-(x=2.2), for example, we go up that line to the 45° line-(y=x) and then go

across to vertical line-(x=1). A dashed blue line is drawn from origin thru that point to an arrow intersecting

line-(x=2.2) at pt-(x=2.2, y=2.22) on parabola-(y=x2). A similar zigzag gives pt-(x=-2, y=4) or any point on the

parabola (y=U(x)=x2) below.

1

y = x

(a) Oscillator potential U(x)=x2

F(-1.5)

(b)Hooke-Law

x=0           1            2  -2        -1

F(-1.25)

F(-1.0)

F(+1.25)

F(+1.0)U=1

U=2

U=3

x=0           1            2  -2        -1

F(2.0)F(-2.0)

F(2.4)F(-2.4)

F(1.5)

U=4

U=5

−Δ

    Δ
−Δ

Δ

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 9.1 Geometric construction of U(x)=x2 potential and Hooke’s force law F(x)=-2x.
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The physicist Force =-Slope rule (6.9) is drawn using force triangles in Fig. 9.1a. Force is linear in x,

that is, F=-2x, and that is minus the slope of x2. A line of slope –2 in Fig. 9.1b plots F(x). Force vector F

scaled by 1/2 gives a force vector shown in Fig. 9.1a equal and opposite to coordinate x. Each force triangle

has base F/2, an altitude that is a constant 1/2, and a hypotenuse normal to the parabola tangent. It is similar

to the tangent triangle with base U and altitude x (center of Fig.9.1) that shows force=-slope (
  
F(x)=

x

U ).

y=2x

y=−   x1
2

y=−2x

y=   x1
2

y=x

y=-x

y=x

y=-x

s3

s2

s

1/s
1/s2

1/s3

-1/s3

-1/s2

-1/s

-s

1/s1/s2 s s2

-1/s2

-1/s

-1/s3

-s

s
s2

s3

1/s

-s3

-s2

1/s 1/s2s

1

1

1

-1

-1

0

0 1

(a) Slope factor s=2 (b)  s=1/2

Fig. 9.2 Geometric sequences and “staircases” for slope or scale factor (a) s=2, and (b) s=1/2 .
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Parabolic geometry

A parabola U(x)=Ax2 has a focal point at y=U=A/4 where vertical rays meet if reflected by parabola

tangents as in Fig. 9.3b. A parabolic radius is its half-width  at the focus. For y=x2 we have =1/2. (Note

how F(±0.5) vectors point at the focus in Fig. 9.1a.) An old name for  is latus rectum. A circle through the

focus about any parabolic point will be tangent to a line called the directrix located at a distance  from the

focus. Focus and directrix define a parabola that passes midway between them thru the tip-point M of the

parabola where its focal radius and equal distance-to-directrix both reach their minimum value /2.

 

(a) Parabolic Reflector y=x2

y=1

y=2

y=3

y=4

y=5

 (b)Parabolic geometry

λ

λ

 Directrix

 Latus
rectum

reflects
     into
           focus

Vertical
incoming
ray

Distance
                to
                Focus

Distance =
      to
directrix

$

λ/2
λ/2

Fig. 9.3 Parabola and analytic geometry (a) Rays converging on focus. (b) -geometry of tangent reflection.

Directrix is a so named because it “directs” both the rays and wave phase of an optical reflector. Since

the focal radius (length of each sloping ray line in Fig. 9.3a) equals the perpendicular directrix distance (length

of corresponding dashed vertical line), waves are guaranteed to be plane waves. Also, the equality of angle of

incidence and reflection off the parabola bisecting the dashed and solid lines, guarantees vertical parallel rays

for all which leave the focus and bounce off the inside of the parabola. It also guarantees that parallel vertical

rays bouncing off the outside will go away from the focus. Either side of a parabolic surface converts plane

waves to spherical ones or vice-versa.

To better understand the parabola’s geometric optics we draw examples of the tangent-kite for four

different tangent slope values. The blue kite of slope=2 in Fig. 9.4a and yellow kite of slope=5/2 in Fig. 9.4b

have equal focal radius and perpendicular distance-to-directrix forming the major iscosoles triangle of the kite.

A minor iscosoles triangle (upside down in Fig. 9.4) shares a base with the major one. Their perpendicular

bisector is the tangent line. The bisection point is slope
  dx
dy
=

x
=

2 p
 x in units of  as indicated by vertical arrows.
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Fig. 9.4 Parabola and geometry of curvature and slope of tangent-kites.

A singular case is the red kite of slope=1 that is square. Lesser slope=1/2 gives a rhomboidal green kite

with one side on the vertical parabolic axis instead of on the horizontal directrix. Points of slope=±1 on the

(4py=x2=2 y)-parabola lie on either side of its focus at distance =2p from it. =2p is also the (minimum)

radius of curvature of the parabola at its tip (minimum y at x=0) that lies a distance  /2=p below the focus.
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Coulomb and oscillator force fields

Our atoms and molecules depend on the electrostatic Coulomb field to have stable chemistry and biology.

Like charges repel and opposites attract with a force that varies inversely with the square of distance r

between them. A simple version of the electric Coulomb force law (axiom) is:

F(r) =
1

4
0

qQ

r 2
  where :

1

4
0

= 9,000,000,000
Newtons meter square

per square Coulomb
(9.1)

The units and notation are standard but the size of this is mind boggling. It’s nine billion Newtons for just

two charge-units a meter apart. (To be precise it’s 8.99·109 Nm2/C2.) OK, a 1N is only about 
 4
1 lb, but are you

able to hold up a billion sticks of butter? Also, you have thousands of Coulomb charge units in each fingertip

with only a centimeter separation so add another factor of (100)-squared. Make that ninety trillion Newtons

for each Coulomb or about a million trillion Newtons trying their darndest to blow your pinkie to bits!

But, still we’re underestimating this monster force. Most of the electronic charge in the world is

crammed into atoms and molecules with at most a nanometer (10-9 meter) across and some are an Angstrom

(10-10 meter) or a tenth of a nano. So put on another factor of (10-9)-squared or million-billion trying to undo

your pinkie, that’s a trillion-trillion-billion. Does your manicurist know about this?

Sometimes these forces get loose as in a TNT blast, but usually, tiny nuclei with an equal positive

charge hold down potentially rebellious electrons. Still, what’s holding nuclei together? Nuclear radii are

femto-meters (10-15 meter) or Fermi. (Note: both fm and Fm are abbreviations for 10-15m=10-13cm.)

Oops! That’s another factor of (10-15)2 or another million-trillion-trillion to increase our stress level.

Nuclear charge is 105 times more pent-up than its atomic electronic counterpart with a grand total of about a

trillion-trillion-trillion-trillion Newtons hankering to blow up your fingertip nuclei. Cancel the manicure!

When nuclei do blow up, the result is more than 105 times more devastating than any TNT bang. We

don’t use force to estimate the devastation of a nuclear fission bomb or the yield of nuclear power plant fuel.

Rather we use electric potential energy, that varies as 1/r not 1/r2. (Slope of a U(r)=1/r-curve is F(r)=1/r2.)

U(r) =
1

4 0

qQ
r

  where:
1

4 0
= 9,000,000,000

Joule
per square Coulomb

(9.2a)

Energy or (Force)-times-(distance)-unit is Joule or Newton. meter (N·m). Like superball potential field U(r) in

(6.9), force F(r) (9.1) is a (-)derivative of potential U(r) that in turn is (-)integral of force F(r). (Recall (7.5.)

F(r) =
dU(r)

dr
=

qQ

4
0

d

dr
r 1

=
qQ

4
0

r 2  (9.2b)

U(R)= F(r)
R

·dr=
qQ

4
0

r 1 R
=

qQ

4
0

R 1  (9.2c)

Potential nuclear energy yield is about a million times greater than for the same number of chemical energy

sources since femto-meter nuclei are a million times smaller (RNUC~10-15) than nano-meter molecules

(RMOL~10-9). Nuclear forces would then be a trillion times greater than typical atomic and molecular forces.

Fig. 9.5 plots attractive Coulomb force F(r)=-1/r2 and potential U(r)=-1/r of negative charge -q to a

positve +Q nucleus. (Negative force points toward the +Q origin (x=0).) It uses zigzag geometry of Fig. 9.4.
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Step1 : Follow line from origin (0,0)
through (x,-1) intercept to (+1,-1/x) intercept.
Transfer laterally to draw (x,-1/x)    point.

Step2 : Follow line from origin (0,0)

through (x,-1/x) point     to (+1,-1/x2) intercept.

Transfer laterally to draw (x,-1/x2)    point.

Δ

−Δ

    Δ
−Δ

Step3 :(Optional) Display Force vector
using similar triangle constuction based
on the slope of potential curve.

Fig. 9.5 Attractive Coulomb force F(x) and potential U(x) curves. (F(x) vectors drawn at 1/4-scale.)

Could the Coulomb F(r)~1/r2 force field be derived like the superball force F(Y)~1/Y3 in (6.10) by

counting momentum bangs? Indeed, if a charge ejected a cloud of little “bang-balls” then the number of bangs

scored at distance r would vary inversely with area 4 r2 of a radius r sphere. But, that idea doesn’t explain

very well attraction of a charge +Q to a –q or of a mass M to a mass m in Newton’s gravity law.

 Fgrav(r) = -GMm / r2 , where: G=0.000000000067 N m/kg2   (9.3)

Gravity is universally attractive (no “negative” matter readily available) but much weaker than the electric

one since G constant 6.672E-11 (
3
2 ·10 10 in mks units) is smaller (by 102 0 times!) than the 9·10+9  in (9.2).

As of this writing it is still a mystery why these are so different. We really do not yet understand

either of these forces at a fundamental level. They are still very much in the axiom box.
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Tunneling to Australia: Earth gravity inside and out

Imagine x=1 in Fig. 9.5 is the Earth radius R =6.4E6m. The F(r) plot shows gravity falling off for

r>R or x>1. But it’s wrong for subterranean radii (r<R ) unless Earth is compressed. F(r)=-1/r2 doesn’t

apply everywhere unless Earth is squashed to a 10 millimeter radius “black hole.” (More on this later.)

If you were to be at sub-R  levels all Earth mass at radii above your radius r can be completely

ignored in figuring your weight! As you might expect, you’re weightless at the center (r=0) since the pull of

all Earth’s mass exactly cancels there. But, so also does your attraction to a spherical mass shell cancel

anywhere inside it. One could float weightlessly anywhere therein regardless of the shell’s size or weight.

Such a cancellation is a geometric peculiarity of an inverse square law. (It also underlies a Gauss law

explanation of why you’re safe inside a car struck by lightning.) Any direction you look inside a uniform

mass shell has a mass element m whose force is cancelled by another element M behind. (See Fig. 9.6.)

The shell tangent to the m-point you’re facing intersects the tangent to the M-point behind you to

make an isosceles triangle whose sides make an angle  with your line of sight along the base. This means a

narrow cone of sight will include shell mass m=Ad2 at a distance d in front of you and shell mass M=AD2 at a

distance D directly behind you, where the angular factor A~1/sin  is the same for both. That assures perfect

cancellation of gravity m/d2 in front with -M/D2 behind you. This applies for all directions in Fig. 9.6.

d

D

You are
Here!

Shell mass element

Shell mass element

M =(soid-angle factor A)D2

Gravity at r
due to shell mass elements
G M  -  G m

D2       d2

D2  -   d2

D2      d2
(           )A = 0

B

Θ

Θ

r

m =(solid-angle factor A) d2

M

m

=
(...and
weightless!)

You are
Here!

O
dΩ
sinΘ

A=

Fig. 9.6 Equal-opposite attraction. Geometry for you floating weightless inside a spherical shell.

A mass m at radius r inside Earth feels gravity attraction GmM</r2 where M< is Earth mass inside the radius r

indicated by the dashed circle in Fig. 9.6. If Earth is uniform density , then that inside-mass is M<=4  r3/3.

Force law r-2 cancels all but one r of the r3 in mass M<. We then get a linear force law.

 Finside(r)=GmM</r2=m(G4  /3) r=mg(r/R )=mgx (9.4a)

(Earth surface gravity: g= G R 4  /3=9.8ms
-2
) (9.4b)

The linear force law (9.4) is like that of a harmonic oscillator in Fig. 9.1b and so the inside-Earth potential

must be a parabola like Fig. 9.1a. Force F(1)=-1 is continuous as we cross x=1 and so must be the slope of

potential U(x) as U changes from –1/x2 to parabola. Terrestrial beings such as ourselves live in a nearly-

constant-field (
 dx
dF 0 )-region near x=1. In Fig. 9.7 we find the potential parabola geometrically by its focal
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point and directrix using the tangent at x=1. Recall a tangent at x= =2p in Fig. 9.4a has slope=1 or 45°. So

does the parabola at x=1 in Fig. 9.7 below have a slope of (+1) and a force of (-1) (That’s –mg in mks units.)

Example of contacting line
and contact point

directrix
 distance

Directrix

Sub-directrix

focal distance  =

2.00.5 x=1(0,0)

-1

-2

-0.5-1.5

Directrix

Latus
rectum

λ

Focus

Parabolic potential
inside Earth

Fig. 9.7 Construction of Earth gravitational fields inside and outside.( units of x: R ,; F: mg; U: mgR )

A parabola tangent bisects the angle between the line to the focus and the directrix drop-line as in Fig.

9.4. Twice 45° gives 90°. The focus is =1.0 units straight across and the directrix is =1.0 units below as

shown in Fig. 9.7 (lower-left). Using this we may construct the parabola by rotating a square corner of a

piece of graph paper around the focus so the corner touches a line halfway to the directrix. (We can call this

half-way line the sub-directrix. It is the line of tangent intersections indicated by arrows in Fig. 9.4.)

The parabola so constructed is y=x2/2 –3/2. That is the interior potential UIN(x) (-1<x<1). It meets the

curve y=-1/x that is the exterior potential UEX(x) (1<x< ) at x=1 where they are equal (UIN(1)=-1=UEX(1)) as

is slope, which is the force (FIN(1)=-1=FEX(1)). (However, the slope of the force curve takes a big jump!)

Adding a constant to a potential won’t alter slope or force. We added 
   2

3  to 
  2
x
2

to make it equal
    x

1  at x=1.
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To catch a falling neutron starlet

The “glue” that holds in the rebellious nuclear proton charge is called nuclear matter, a mix of

neutrons, mesons, and their ingredients. Let’s imagine a fingertip (1cc) of neutrons as densely packed as they

are in a nucleus or neutron star and estimate how such a neutron starlet might travel through Earth.  First, we

find the density of nuclear matter. Let’s say a nucleus of atomic weight 50 has a radius of 3 fm, so it has 50

nucleons each with a mass 2·10-27kg. (It’s actually more like 1.67·10-27, but roughly 2·10-27.)

That is 100·10-27=10-25 kg packed into a volume of 4 /3r
3= 4 /3 (3·10-15)3 m3 or about 10-43 m3. That

gives a whopping density of 10-25+43 = 1018kg per m3 or a trillion kilograms in the size of a fingertip.

That’s a pretty heavy fingertip! Its weight mg is ten trillion Newtons. (Well, actually 9.8 trillion

Newtons. No need to exaggerate here!) In spite of this, its gravitational attraction to nearby rocks on the

Earth is comparatively moderate. A (10cm)3 1kg rock would cling to the starlet with a force of about

Frock=Gm(1kg)/r2= 100Gm = 100(6.7E-11)1E12 = 6,700 N, (m=Mstarlet=1012kg)

or less than a ton and small change for a starlet weighing billions of tons and cutting into the Earth like a bullet

going through cotton candy. Let’s see what speed it might gain falling from the surface.

Starlet energy is assumed constant since friction would be tiny compared to its enormous weight.

E = KE + PE = 1/2 m v2 + U(x) =1/2 m v2 + 1/2 mg (x2 –3)=const.   (9.5)

Let it be released at Earth surface (x=1) with zero velocity. This sets the energy constant.

E =1/2 m02 + 1/2 mg (12 –3)=const.=- mg   (9.6)

At Earth center (x=0) we solve for the velocity there. (The starlet mass m cancels out.)

E =1/2 mv2 + 1/2 mg (02 –3)=const.=- mg   or: v2 = g ,  (9.7a)

 v = g   (In mks units: v2 = gR  ,  or : v0 = (g R )=8 km/s) (9.7b)

v0 = 8 km/s is also Earth’s minimum orbital insertion speed. A mass dropped down the tunnel flies with the

same x-coordinate as one shot with the speed v0 into circular orbit. One flies above the other and they meet

each other on the other side 42 minutes later as shown in Fig. 9.8. We now show this synchrony of orbital

timing holds for all pairs of starlets sent from anywhere inside the Earth!

v0
v0

θ

θ=π/2

θ=π

v0

v0

v0 42
minutes
later...

Fig. 9.8 Neutron starlet penetrates Earth as satellite orbits to meet 1/2-way around in 42 minutes.
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This synchrony involves a physicist’s most favored type of potential energy U=1/2kx2. When PE=U

is a square like kinetic energy KE=1/2mv2 we have a wonderful symmetry between position x and velocity v.

  E=KE +PE= const. = 1/2mv2 + 1/2kx2

We make any constant-sum-of-squares into a Pythagorian relation 1=sin2 +cos2
  just as we did to analyze

the sum (5.10) of super-ball KE. Here (9.5) is a sum E=KE+PE and the constant k is starlet weight mg.

1=(m v2/2E) + (k x2/2E) =sin2 +cos2
  (9.8a)

Position x and velocity v are then expressed in terms sine and cosine of a phase angle  .

    x= (2E/k) sin  (9.8b) v= (2E/m) cos   .  (9.8c)

Velocity v is proportional to cos  and  has a constant angular velocity =
 dt

d  so that = ·t+ . ( = 0=const.)

v=
dx

dt
=

dx

d

d

dt
=

dx

d
=

2E

k
cos =

2E

m
cos  (9.9a)    where: =

d

dt
=

k

m
(9.9b)

Angle  is a polar angle in (x,v/ )-phasor-space of Fig. 9.10a. (x,v/ )-orbits are circular-clockwise ( = | |) if

positive phasor v-axis is up and positive-x axis is to the right. Earth xy-orbits may be elliptical with a polar

angle  that can orbit either way in Fig. 9.10. Each spatial dimension x and y has a constant sub-total energy.

     KETotal=ey+ey    where:   ex=const.= 1/2mvx
2 + 1/2kx2 and: ey=const.= 1/2mvy

2 + 1/2ky2 (9.10)

Equal constants (ex=ey) give the circular orbit in Fig. 9.8. Frequency  (9.9) is independent of energy value ex

or ey and so orbit and x-tunnel motion each have frequency = g, but tunnel motion, with same ex but zero

ey, has half the energy. All motions of the starlet inside the Earth have the same 84-minute period. That is a

fundamental harmonic period of a uniform Earth and approximates behavior of the real Earth.

To depict the force vector F on the starlet simply draw an arrow from it to origin as in Fig. 9.9a since

F is proportional to coordinate vector -r. (In Fig. 9.7, F is equal to –r.) It’s projection on x or y-axes are the

forces components driving the 84-minute oscillations along x or y-axes. Perhaps, there is a starlet deep below

us swishing out 84-minute elliptical orbits as in Fig. 9.9b.

Fx

v0

Fy

F=-r
(a) (b)

Fig. 9.9 Force and orbits inside Earth. (a) F is minus the coordinate vector (b) Typical orbits.
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 Starlet escapes! (In 3 equal steps)

Imagine starlet-m has decayed to where it sits at the bottom of the U(x)=1/2mg(x2–3) curve in Fig. 9.7. How

much energy does it take for it to escape from Earth center and go back whence it came? The plot of U(x) in

Fig. 9.7 and discussions above suggest three equal steps of 1/2 that bring energy -3/2 at x=0 up zero at x=

Step-1 is to drag or shoot the starlet-m to the Earth’s surface. That takes energy E1=
1/2. (That’s

1/2mgR  in mks units.) Shooting radially at velocity v0 = (gR ) given by (9.7b) would do this first step. It

would then come to rest (momentarily) at the Earth surface at r=R .

Step-2 is to launch starlet-m into a minimal circular orbit from the Earth’s surface. That takes dollop

of energy E2=
1/2 equal to the first. (Again, that’s 1/2mgR  in mks units.) Shooting tangentially with minimum

orbital insertion velocity v0 = (gR ) given by (9.7b) does this second step.

Step-3 involves a final energy jump E3=
1/2 equal to each of the first two by increasing from the

orbital insertion velocity v0 =  (gR ) to the escape velocity Ve from Earth’s surface r=R .

 Ve = v0 2=  (2gR ) =11.3 km/s=7 mile/s (9.11a)

In terms of fundamental potential Ugrav(R )= -GMm /R  at a planets surface r=R  the escape velocity is

 Ve = v0 2=  (2GM/R ) . (9.11b)

Orbital threshold velocity v0 of radius R  is 2=0.707 or about 71% of the escape velocity Ve from there.

No escape: A black-hole Earth!

By uniformly compressing Earth, we imagine extending the region of the Coulomb potential –1/r in Fig. 9.5 to

lower values of r while making the harmonic potential U(r)= 1/2kr2 inside the body occupy a smaller and

smaller radius R  and take on narrower, deeper, and more negative energy values.

The plot in Fig. 9.5 maintains its shape but we rescale to accommodate a squashed Earth. The escape

velocity in (9.11b) grows as we consider a decreasing squashed-planet radius R . Finally there comes a

particular radius R  where the escape velocity (9.11b) is the speed c of light.

 c =  (2GM/R ) (9.12a)

That radius is called the Schwarschild radius or “black hole” radius since light cannot escape.

 R  = 2GM/c2 (9.12b)

For the earth of mass M  = 6·1024 kg the radius R  is about nine mm, or the size of a fingertip. It is

hard to imagine our world so squashed! Things may be collapsing all around, but not that much.

Oscillator phasor plots and elliptic orbits

The oscillator functions in (9.8) suggest a coordinate-velocity plot or phase-space plot. By (9.9) the

phase angle = ·t+  is a product of angular frequency  and time. To get a circle starting on the x-axis, we set

initial phase to = 0= /2 and plot (x= X cos t, v/ = -X sin t) for the “clock” or phasor plot in Fig. 9.10a.
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So that positive v versus x defines its 1st quadrant, a phasor rotates clockwise like a clock hand so angle

= | |t has a minus sign. (This is quite apropos since our clocks now are waves and harmonic oscillators.)

Each dimension x and y has its phasor plot as indicated by Fig. 9.10b. In other words there are four

phase-space or phasor dimensions (x , vx/  , y , vy/ ) being plotted. Here the frequency  for each dimension

x and y is identical due to symmetry or isotropy of the Earth model. But, initial phases x and y of x and y are

independent. In Fig. 9.10b we set x-oscillator phase to 2 o’clock (on a 16-hour clock) and y-oscillator 2 hours

ahead to 4 o’clock so the ellipse orbit is clockwise and have a left-handed symmetry. Setting x to be 2 hours

ahead of y makes the same orbit but it will go counter-clockwise and have a right-handed symmetry.

The x versus y plot with x always two hours or 45° behind y, is an inclined elliptical xy-orbit path in

Fig. 9.10b. It might represent a typical neutron starlet path in the Earth. Or else, it might represent an optical

polarization ellipse described in Unit 2. Below is a discussion of some special cases of orbit ellipses.
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Fig. 9.10 Oscillator plots. (a) 1D-HO phasor plot. (b) Isotropic 2D-oscillator phasors and xy-path.
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First we verify by algebra that orbits in Fig. 9.11 are ellipses. Fig. 9.11a has x running 90° behind y

with a relative phase lag = x y= /2 that is 4 hours or 1/4-period behind in phase on a 16-hour clock. We

say such a 90°-lagging-x-motion is in-quadrature to y-motion. It gives an un-tilted ellipse with a left-handed

orbit, and if ex=a=b=ey then it gives a circular orbit or left-circular polarization. (See Fig. 9.11a on right.) For

right-handed orbits x-motion and x-motion switch leads to = x y= /2.

Quadrature xy -motion is a cosine and sine projection on a-side and b-side of an ellipse, respectively,

based on expressions (9.8).

x = a cos  t , (9.13a)   y = b cos( /2-  t) = b sin  t . (9.13b)

Squaring and adding cosine and sine expressions gives a standard xy-ellipse equation.

x 2 / a2
+ y2 / b2

= 1 (9.13c)

Zero phase lag  =0 or in-phase motion gives linear polarization in Fig. 9.11b. In the case of Fig.

9.11b where x and y-motions are in-phase we have

x = a cos ·t , (9.14a)  y = b cos ·t .  (9.14b)

Combining these two gives a trajectory that follows a straight line of slope (b/a) seen in the figure.

 y = (b/a) x (9.14c)

Lag  =±  or pi-out-of-phase is a linear polarized motion, too.

x = a cos ·t , (9.15a)  y = -b cos ·t .  (9.15b)

It is simply a horizontal mirror reflection of the in-phase path.

 y =-(b/a) x (9.15c)

In each of the figures we could imagine three starlets going in unison. The first starlet obeys the y-

equation (9.13b) with x=0. The second starlet obeys the x-equation (9.13a) with y=0 like the tunneling starlet

in Fig. 9.8. A third starlet obeys both the x and y equations like the starlet orbiting above the tunneling one(s).

A linear force field F=-kr is the only field whose Cartesian components oscillate sinusoidally at the

same frequency.

 F=-kr implies : Fx=-kx ,    Fy=-ky ,    Fz=-kz          (9.15)

Neither the coulomb field F=-kr/r3 nor any other power-law field F=-krrp is so convenient!

As shown in later units, negative energy orbits in Coulomb fields are elliptic, too. However, Coulomb

ellipses are symmetric about origin only for circular orbits. All other Coulomb orbits are eccentric since they

orbit about one off-center focal point and not the ellipse center like a Hooke’s law oscillator orbit.
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Fig. 9.11 Two 1-D oscillator phasor plots combine to give 2D-oscillator xy-trajectory.
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Chapter 10 Exponentials, logarithms, and complex phasors
A logarithmic potential curve U=ln(y)=logey was given by (6.11).  Our first example is the flip or

inverse exponential curve y=eU since that function is so important for making the complex phasor e-(i + )t.

Also, the population growth function y=e
t
=exp(t) is one of the most used if not the most useful of

transcendental functions. Roughly, transcendental means not expressed by finite algebra or constructed by

Euclid’s strict rules. (However, like transcendental spirituality, it is easily approximated!) Later in this

section we will prove that the exponential is the only function that is equal to its slope or derivative.

d
dx

f (x) = f (x)          if and only if :      f (x) = ex     where: e = 2.7182818... (10.1)

In other words, if e
x
 is a force or potential curve then F(x) and U(x) are similar, in fact, identical.

 Fmath(x) =
dU
dx

= U(x). if and only if: U(x)=e
x
  (10.2a)

For physicist’s definition (6.9) of force, e
-x

 is the one for which potential and force are identical.

 Fphys(x) =
dU
dx

 = U(x). if and only if: U(x)= e
-x

 (10.2b)

For now we use these slope-function relations to construct the exponential curve approximately.

Starting from origin (x=0) we use the fact that any positive number to zero power is 1. (e
0
=1) From that

point we draw a right triangle made of a unit altitude, a unit base, and a hypotenuse line of slope-1 as

indicated in Step-0 of Fig. 9.12. The hypotenuse line gives approximately the points just above and just

below x=0.  Then subsequent steps move the right triangle x to a point on the previously constructed line to

make the next line. Since the slope is equal to the new function value, the base stays fixed at 1, but the

altitude grows with the function value and makes the new line and a new point up the e
x
-curve.

This approximation is a rough one. It underestimates a concave curve and overestimates convex ones

because it puts the next point x+ x on a tangent from the previous point x. That’s OK only if the curve is

pretty straight and tangent slope is about the same at x+ x. A better approximation uses the tangent halfway

between neighboring tangents and extends that new slope to x+ x to find the next point.

Now if you rotate your y= e
x
-graph by 90° you get a logarithm U(y)=-ln(y) graph as shown in Fig.

10.1 (lower right). Each U(y)-curve-normal defines a unit-altitude triangle whose base is the force F(y)=1/y.

The story of e : A tale of great intrest

Long ago banks would pay simple intrest at some rate r such as r=0.03 (3%) based on a 1 year

period. You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). If

you put in $1.00 at rate r=1 (like Israel that once had 100% intrest.) you got $2.00 at t=1year.
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Step-0 (y0=1) Unit slope

right triangle

Step-1 (y1)- slope

right triangle

Step-2 (y2)- slope

right triangle

Base of triangle always equals 1
1 1 1

y0=1 y1
y2

Step-3 (y3)- slope

right triangle

1

y3

Approximating y=ex

Approximating
Potential U(y)=-ln y

and

F(1)

F(2)

F(3)

1

1
1

F(0.4)
1

U(y)

y=0           1            2             3

U=1

U=2

U=0

Rotate graph paper by 90

Force F(y) is base of triangle if  altitude is 1
      and  hypotenuse is 90  to U(y) curve

Δx=0.2 Δx=0.2 Δx=0.2

Fig. 10.1 Rough constructions (a) exponential curve y=e
x
=exp(x). (b) Log potential. (c) 1/y-Force.

Later on fancy banks would pay semester compounded intrest p(2
t ) = (1+ r·2

t )p(0)  at the half-period

2
t and then use p(2

t )  during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

p 2
1

(t) = (1+ r·2
t )p(2

t ) = (1+ r·2
t )·(1+ r·2

t )p(0) =2
3 ·2

3 ·1=4
9
= 2.25

Fancier banks would pay trimester compounded interest p(3
t ) = (1+ r·3

t )p(0)  at the 1/3rd-period 3
t  or

1st trimester and then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1

(t) = (1+ r·3
t )p(23

t ) = (1+ r·3
t )·(1+ r·3

t )p(3
t ) = (1+ r·3

t )·(1+ r·3
t )·(1+ r·3

t )p(0) =3
4 ·3

4 ·3
4 ·1=27

64
= 2.37

Still fancier banks would pay quarterly, monthly, weekly, daily, and so on. The race was on to give better

earnings at a given interest rate r. Let’s compare some different earnings on $1.00 at rate r=1. At first it looks

like you gain a lot by compounding more often. Then earnings slow to a halt just shy of $2.72.
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p1
1

(t) = (1+ r·1
t )1 p(0) = 1

2( )
1
·1= 1

2
= 2.00

p 2
1

(t) = (1+ r·2
t )2 p(0) = 2

3( )
2
·1=4

9
= 2.25

p 3
1

(t) = (1+ r·3
t )3 p(0) = 3

4( )
3
·1=27

64
= 2.37

p 4
1

(t) = (1+ r·4
t )4 p(0) = 4

5( )
4
·1=256

625
= 2.44

 Monthly:       p12
1

(t) = (1+ r·12
t )12 p(0) = 12

13( )
12

·1= 2.613 

 Weekly:        p 52
1

(t) = (1+ r·52
t )52 p(0) = 52

53( )
52

·1= 2.693

 Daily:      p 365
1

(t) = (1+ r·365
t )365 p(0) = 365

366( )
365

·1= 2.7145

 Hrly:  p8760
1

(t) = (1+ r·8760
t )8760 p(0) = 8760

8761( )
8760

·1= 2.7181

That halting point is Euler’s growth constant e=2.718281828459… that we’re after. Let's try huge

numbers (m) of multiplications in p1/m (1) = (1+m
1 )m . (Get out a calculator. Rule & compass is useless now!)

p1/m(1) = 2.7169239322 for m = 1,000
p1/m(1) = 2.7181459268 for m = 10,000
p1/m(1) = 2.7182682372 for m = 100,000

p1/m(1) = 2.7182804693 for m = 1,000,000 (10.3)
p1/m(1) = 2.7182816925 for m = 10,000,000
p1/m(1) = 2.7182818149 for m = 100,000,000
p1/m(1) = 2.7182818271 for m = 1,000,000,000

The solid figures represent numbers that stay the same as we raise m. It’s still a torturous way to find e. We

do a Billion (That’s “B” as in “Boy!”) multiplications (m=109) just to get 6 solid figures beyond 2.71.

A better way expands binomial e = limm (1+m
1 )m or its power ert

= limm (1+m
1 )mr t  for all rates r

and times t. We let mr·t=n and m =n/r·t to simplify it for huge multiplication numbers m or n.

er·t
= limm (1+m

1 )mr·t
= limn (1+n

r·t )n (10.4)

The general binomial expansion turns exponential function er·t into a power series in y =n
r·t  with x=1.

(x + y)n
= xn

+ n xn 1y +
n(n 1)

2!
xn 2y2

+
n(n 1)(n 2)

3!
xn 3y3

+ ...+ n xyn 1
+ yn

We actually save work as multiplication number n gets huge! (“Huge” means “as close to  as you like.”)

(1+
r t

n
)n

= 1+ n
r t

n
+

n(n 1)

2!

r t

n

2

+
n(n 1)(n 2)

3!

r t

n

3

+ ...
(Note factorials: 0!=1=1!,

2!=1·2, 3!=1·2·3,  etc.)

Huge n makes n(n-1) cancel n2 , and n(n-1)(n-2) cancel n3 , and so on. The exponential er·t series is born.

  er t
= 1+ r t +

1

2!
r t( )

2
+

1

3!
r t( )

3
+ ... =

r t( )
p

p!p=0

o
 (10.5a) e = 1+1+

1

2!
+

1

3!
+ ...

1

o!
=

1

p!p=0

o
 (10.5b)

Let’s try it out for r·t=1 to evaluate e to order-o. (The precision order o is the power of highest term used.)

Precision order: (o=1)-e-series = 2.00000 =1+1
 (o=2)-e-series = 2.50000  =1+1+1/2
 (o=3)-e-series = 2.66667  =1+1+1/2+1/6
 (o=4)-e-series = 2.70833  =1+1+1/2+1/6+1/24

 (o=5)-e-series = 2.71667  =1+1+1/2+1/6+1/24+1/120 (10.6)
 (o=6)-e-series = 2.71805  =1+1+1/2+1/6+1/24+1/120+1/720
 (o=7)-e-series = 2.71825
 (o=8)-e-series = 2.71828
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Nine terms in series (10.5) give 5-figure accuracy (10.6) and do the work of a million products in (10.3).

That’s a million reduced to 8 sums and half-dozen or so divisions. It’s a big savings of arithmetic labor!

Derivatives, rates, and rate equations

Binomial expansions provide ways to find calculus formulas for slope or velocity introduced geometrically in

Ch. 1. Soon we will do the same for curvature or acceleration and other higher order calculus concepts.

Suppose someone gives you a plot of formula like x(t)=t2 or x(t)=sin4t or an exponential plot of x(t)=et

that we just did in Fig. 10.1. You should be able to estimate its slope at any point from its x versus t graph.

However, a binomial expansion may let you find an exact formula for its slope.

Consider a parabola x(t)=t2 for example. Let’s find the slope 
t
x of a line that goes through point x(t)

and a point x(t+ t) =(t+ t)2 that is a tiny time interval t later. Binomial expansion gives x=x(t+ t)-x(t).

 x=x(t+ t)-x(t)=(t+ t)2-t2=t2+2t· t+( t)2-t2=2t· t+( t)2

 Slope ratio
t
x follows. If  t  is tiny we ignore it. Then tangent slope v(t) =

dt
dx  is the 1st derivative of x(t)=t2.

x

t
=

2t· t + ( t)2

t
= 2t + t (10.7a)

dx

dt
= v(t) = 2t =

d

dt
t2  (10.7b)

This checks the geometry of parabola 2 y=x2 in Fig. 9.4. Slope is 
dx
dy
=2

2 x
=

x , twice the x-value in units of 2 .

Consider an n-power curve x(t)=Atn. Binomial expansion of x=x(t+ t)-x(t) has n terms, most in +…+.

 x=x(t+ t)-x(t)=A(t+ t)n-Atn=Atn+Antn-1· t+…+A( t)n-Atn=Antn-1· t+…+A( t)n

If  t  is tiny, only 1st term Ant
n-1 in slope ratio

t
x  is not tiny-tiny. That 1st term is 1st derivative of x(t)=Atn.

x

t
= A

ntn 1· t + ... + ( t)n

t
= Antn 1

+ ... + A( t)n 1 (10.8a)
dx

dt
= v(t) = Antn 1

=
d

dt
Atn  (10.8b)

Series for x(t)=Aet is unchanged (for r=1) by dt
d . It does kill term number- , but !

1 r t  is tiny-tiny-tiny anyway.

d

dt
ert

=
d

dt
1+

d

dt
rt +

d

dt

1

2!
r 2t2

+
d

dt

1

3!
r3t3

+
d

dt

1

4!
r 4t4

+ ...             (From (10.5a) and linearity)

         =  0 +   r     +   
2

2!
r 2t    +  

3

3!
r3t2   +  

4

4!
r 4t3    + ...             (From (10.8b) )

         =  0 +   r     +       r 2t     +  
1

2!
r3t2   +  

1

3!
r 4t3    + ...             (Factorial n!=n·(n-1)·(n-2)·...·1 )

         =    r  (   1    +       rt       +  
1

2!
r 2t2   +  

1

3!
r3t3    + ...) = rert   (From (10.5a) again)

(10.9)

For 100% intrest (r=1), growth rate-of-Aet equals Aet. Otherwise, growth rate of Aert is proportional to Aert.

To state that the growth rate of a function x(t) equals a constant “intrest rate” r times current value of x(t) is

to write a differential rate equation whose “solution” is x(t)=Aert. (The constant A is “initial capital” A=x(0).)

Rate equation :   
dx

dt
= r x(t)  has solution :     x(t) = x(0)ert (10.10)

It is Malthus’s population explosion equation for positive rate r>0! It is radioactive decay equation for r<0.
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General power series approximations

Are power series like (10.5) useful for functions other than exponentials? Well, Mr. Maclaurin and Mr.

Taylor thought so. Series that bear their names are de rigeur in good math books. (And, in this one, too!)

Let’s start with a general power series like (10.5) but with arbitrary constant coefficients c0, c1, etc.

x(t) = c0 + c1t + c2t2
+ c3t3

+ c4t4
+ c5t5

+ ...+ cntn
+ (10.11a)

We derive c0 by setting time t to an initial time t=0. (Like C-programmers, we count “uh-zero, uh-one, uh-two,..”)

c0 = x(0) (10.11b)

So the 0th coefficient c0 is initial position x(0). Now we use (10.8b) to find a derivative of each term.

v(t) =
d

dt
x(t) = 0 + c1 + 2c2t + 3c3t2

+ 4c4t3
+ 5c5t4

+ ...+ ncntn 1
+ (10.11c)

Rate of change of position x(t) is velocity v(t). Setting t=0 derives c1.

c1 = v(0) (10.11d)

So the 1st coefficient c1 is initial velocity v(0). Now find a 2nd derivative using (10.8b).

a(t) =
d

dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t2

+ 4·5c5t3
+ ...+ n(n 1)cntn 2

+ (10.11c)

Change of velocity v(t) is acceleration a(t). Set t=0 to get c2.

c2 = 2
1 a(0) (10.11d)

So the 2nd coefficient c2 is half the initial acceleration a(0). Now a 3rd derivative:

j(t) =
d

dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t2

+ ...+ n(n 1)(n 2)cntn 3
+ (10.11e)

Change of acceleration a(t) is jerk j(t). (Jerk is a NASA sanctioned term!) Set t=0 to get c3.

c3 = 3!
1  j(0) (10.11f)

So the 3rd coefficient c3 is initial jerk j(0) over 3! Now a 4th derivative:

i(t) =
d

dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n 1)(n 2)(n 3)cntn 4

+ (10.11g)

Change of jerk j(t) is inauguration i(t). (If NASA can be silly, so can we!) Set t=0 to get c4.

c4 = 4!
1  i(0) (10.11h)

So the 4th coefficient c4 is initial inauguration i(0) over 4!. Now a 5th derivative.

r(t) =
d

dt
i(t) = 0 + 2·3·4·5c5 + ...+ n(n 1)(n 2)(n 3)(n 4)cntn 5

+ (10.11i)

Change of inauguration i(t) is revolution r(t). (Ooops! Politically incorrect!) Quick set t=0 to get c5.

c5 = 5!
1  r(0) (10.11j)
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That’s enough iterations to show the Maclaurin series of any function x(t) that has decent derivatives.

x(t) = x(0)+ v(0)t +2!
1 a(0)t2

+3!
1 j(0)t3

+4!
1 i(0)t4

+5!
1 r(0)t5

+ ...+n!
1 x(n)tn

+ … (10.12a)

By “decent” we mean the non-exploding types that we can deal with. The following is a list that shows some

of the notations used for the higher order derivatives discussed so far.

 

v(t) =
d

dt
x(t) = x(t)

a(t) =
d

dt
v(t) = v(t) =

d2

dt2
x(t) = x(t)

j(t) =
d

dt
a(t) = a(t) =

d2

dt2
v(t) = v(t) =

d3

dt2
x(t) = x (t)

i(t) =
d

dt
j(t) = j(t) =

d2

dt2
a(t) = a(t) =

d3

dt2
v(t) = v (t) =

d4

dt4
x(t) = x (t)

(10.12b)

The “dot” notation writes n-derivatives of x(t) by puttting n-dots over x. This may help prevent writer’s

cramp. But, j-dot looks, well, kind of jerky. It’s common to use primes ( y =dx
dy , y =

dx2
d 2 y ,etc. ) for x-derivatives.

How good is a power series (10.5) at faking x=et beyond t=1listed in (10.6)? We plot various orders of

approximation in Fig. 10.2. The 1st order (2-terms of (10.5a)) is just a straight line of slope 1. A 2nd order (3-

term) parabola, 3rd order cubic, 4th order quartic, etc. each peel off x=et in sucession. All meet at (t=0,x=1).

quadratic
(parabola)

cubic

quartic
x(t)=et

line
constant

Fig. 10.2 Comparing x=et with its nth-order approximate power series.
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Sine-wave power series

A severe test of power series is their ability to fake sine waves. The derivative and rate equation for the sine

function x(t)=sin t uses expansion x(t+ t)=sin (t+ t). To expand sin(a+b) or cos(a+b) we use Fig. 10.3.

sin(a+b)= cosa sinb + sina cosb (10.13a) cos(a+b)= cosa cosb - sina sinb (10.13b)

a
b

a

a
cosa sinb

sina cosb

sina sinb
cosa cosb

sin(a+b)=
cosa sinb+sina cosb

cos(a+b)=cosa cosb-sina sinb

Fig. 10.3 Geometry of sine and cosine expansion identities.

Expansion of x=x(t+ t)-x(t) for sine or cosine is easy since sin · t= · t and cos · t=1 for tiny t.

sin (t + t) - sin t

= cos t sin t + sin t cos t - sin t

= cos t  ( t) + sin t  (1)        - sin t

cos (t + t) - cos t

= cos t cos t sin t sin t - cos t

= cos t   (1)       sin t  ( t) - cos t

= ( t) cos t    (10.14a) = ( t)sin t    (10.14b)

We will need the sine and cosine slope (derivative) formulas that follow from this.

d

dt
sin t =

sin (t + t) - sin t

t
   

d

dt
cos t =

cos (t + t) - cos t

t

              = cos t (10.15a)                = sin t (10.15b)

A list of series coefficients cn =n!
1

d tn
d n x  in (10.12) for sine x=sin t and cosine x=cos t is worked out below.

c0 = x(0) = sin ·0 = 0

c1 = v(0) = + ·cos ·0 = +

c2 =
a(0)

2!
=

2

2!
·sin ·0 = 0

c3 =
j(0)

3!
=

3

3!
·cos ·0 =

3

3!

c4 =
i(0)

4!
= +

4

4!
·sin ·0 = 0

c5 =
r(0)

5!
= +

5

5!
·cos ·0 = +

5

5!

c0 = x(0) = cos ·0           = 1

c1 = v(0) = ·sin ·0     = 0

c2 =
a(0)

2!
=

2

2!
·cos ·0 =

2

2!

c3 =
j(0)

3!
= +

3

3!
·sin ·0 = 0

c4 =
i(0)

4!
= +

4

4!
·cos ·0 = +

4

4!

c5 =
r(0)

5!
=

5

5!
·sin ·0 = 0

A sine derivative repeats after four orders: …sin t, cos t, -sin t, -cos t, (again) sin t, cos t, -sin t, -cos t, (etc.) .



©2008 W. G. Harter Chapter10. Exponentials and complex phasors 122

The resulting sine and cosine series show this repeat-after-4-pattern of factors 0,1,0,-1 of   n!
( t)n

terms.

sin t = 0 + t + 0
( t)3

3!
+ 0 +

( t)5

5!
+ 0 ... cos t = 1+ 0

( t)2

2!
+ 0 +

( t)4

4!
+ 0 ...

(10.16a) (10.16b)

The sine is an odd function to time reversal (sin(-t) =-sin(t)), but cosine is even (cos(-t) =+cos(t)). Thus sine

has only odd powers p=1,3,5,… of time and cosine has only even powers p=0,2,4,…. Series plots (10.16) in

Fig. 10.4 have highest power or order o=1st,2nd
,3

rd
,4

th
,etc. Number n of terms is 

    2
o+1 for sine and 

    2
o+2  for cosine.

Fig. 10.4 Comparing (a) x=sin t and (b) x=cos t with their nth-order approximate power series.

It takes a 9th (for sin t) or 10th (for cos t) order series of 5 terms to get one full oscillation with 5% or

better precision. Then 10 terms gives two oscillations, and so on. Fig. 10.4 shows that precision breaks down

quite explosively. Polynomials are exponentially degrading approximations of wave motion.
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Euler’s theorem and relations

Sine, cosine, and ert power series (10.16) and (10.9) lead to an 18th Century crown jewel of mathematics. It is

due to a close relation of these series and the functions they represent. It is hard to imagine, but exponential

intrest rate growth and simple harmonic oscillation are related. As it turns out, the relation is quite imaginary!

Suppose the fancy bankers really went bonkers and made intrest rate r an imaginary number r=i .

Imaginary number i = 1  has powers with a repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... It fits

the pattern leading to cos  and sin  series (10.16). Series (10.9) with imaginary rt=i  joins the (10.16) series.

ei
= 1+ i +

(i )2

2!
+

(i )3

3!
+

(i )4

4!
+

(i )5

5!
+ ...        (From series (10.9))

      = 1+ i
2

2!
  i

3

3!
  +

4

4!
   + i

5

5!
 ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5=i,...)

      = 1
2

2!
+

4

4!
... + i i

3

3!
+ i

5

5!
...     (To match series (10.16))   

ei  =       cos                +           i sin                            Euler - DeMoivre Theorem (10.17)

The resulting Euler-DeMoivre Theorem is a beautiful identity and a very powerful tool as we shall see. First

and foremost it is a complex wave phasor function = Ae i t that we will use from now on. (Note:  =- ·t.)

= Ae i t
= Acos t i Asin t = Re + i Im = x + i y (10.18)

Fig. 10.5a plots ei  in the complex plane, a real-vs-imaginary graph. Fig. 10.5b shows = Ae i t  as a complex

phasor clock. Its real part is position Re  =x(t) and its imaginary part is -scaled velocity Im  =v(t)/ . Polar-

to-Cartesian conversion (10.19a) and vice-versa (10.19b) are easy by scientific calculator. (Recall end of Ch. 1.)

 

  

(x, y) form
Cartesian

x
= Re (t)  = x(t) =   Acos t

y
= Im (t) =

v(t)
= Asin t

  (10.19a)

  

(r , )
form

Polar
r = A =| |=

x
2
+

y
2

= t=arctan(
y

/
x
)
(10.19b)

Real part Re  is the “is” (that Clinton sought in 1997) and Im  is what Re  is “gonna-be” in
 4
1 -cycle (as in

“gonna be in trouble!” A mantra,“Imagination precedes reality by one quarter” works here as in US corporate

world.) Euler expo-sino conversion identities relate cos , sin , and e±i . A conjugate * reflects i with –i.

  

= re
+i

= re
i t

= r(cos t i sin t)

*
= re

i
= re

+i t
= r(cos t + i sin t)

(10.20a) 

  

cos =
2
1 (e+i

+ e
i )

sin =
2i
1 (e+i

e
i )

(10.20b)

A special case is e-i =-1. (We’ll also use a real -exponential: e- =0.04321.) Other special cases are noted.

e i
= 1 = e+i , e

+i
2 = i = e

i
2 ,

  
e

+i
4 =

2

  1
(1+ i) = e

i
3

4 = e

+i
5

4 . (10.21)
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eiθ=x+iy

  x=
θ

y=sin θ
e iπ=-1

e+iπ/2=+i

e-iπ/2=-i

e+iπ/4

e+i5π/4=e-i3π/4

           

imaginary
axis

real
axis

imaginary
axis

real
axis

Magnitude or Modulus
A = |ψ ψ*ψ

A

−ω t
Phase angle or Argument
θ=−ω t = ATAN[v(t)/ω x(t)]

x(t)

Re ψ
x(t) = Acosω t

 Im ψ
y(t)=v(t)/ω= -Asinω

t

Re ψ

Im ψ )

(b) Quantum Phasor Clock ψ  = Ae-iωt  = Acosω t−i Asinω t=x+iy

Ψ

v(t)
ω

(a) Complex plane and unit vectors

%�&'�

��$%�()(*+

�'�*)+�'(

��$%�()(*+

e-iπ/4=(1-i

1

cos θ

Ae-iωt

Fig. 10.5 (a) Complex plane. (b) Phasor clock. Cartesian form uses (Re , Im ). Polar form uses (| |, ).

Wages of imaginary intrest: Phasor oscillation dynamics

By now bankers should know what happens when you use imaginary intrest. The accounts oscillate up and

down and the imagineering bankers oscillate in and out of the slammer. (At least that was the way until 2001

when the Bush administration passed the No Banker Left on His Behind Act that also outlawed reality.)

Consider exponential rate equation (10.15) with negative imaginary rate r=-i .

Imaginary rate equation :   
dx

dt
= i x(t)  has solution :   x(t) = x(0)e i t (10.22a)

It becomes a real 2nd order equation if we apply the derivative operation to both sides.

d

dt

dx(t)

dt
=

d2x

dt2
= i

d

dt
x(t) = i ( i ·x(t)) = 2x(t) (10.22b)

It is the Newton-Hooke simple harmonic oscillator equation, but it has the same solution as (10.19) above.
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Newton Hooke HO equation :  
d2x

dt2
=

2x(t)  has solution :  x(t) = x(0)e i t (10.23a)

It combines Newton’s force law F=m·a=m x  and Hooke’s force law F=-k·x. The  value repeats (9.9b).

m
d2x

dt2
= k·x(t)  has angular  frequency :  =

k

m
(10.23b)

What Good Are Complex Exponentials?

Complex Exponentials are used to describe oscillation, resonance, waves and fields. We don't use them

just to be cute! Let’s look at some compelling reasons for using imaginary or complex arithmetic.

Complex numbers provide "automatic  trigonometry"
If you have trouble remembering trigonometric identities then this is a good reason all by itself to use

complex numbers. For example, if you're taking a test and you can't remember what is cos(a+b), then just

factor ei(a+b) = eiaeib, expand exponentials into eia = cos a + i sin a and multiply them out.

ei(a+b) = eiaeib

cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)

cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b](10.24a)

That’s two trig identities for the price of one! The real part gives the cosine relation (10.13b).

cos(a+b) = [cos a cos b - sin a sin b] (10.24b)

The imaginary part gives the sine relation (10.13a).

sin(a+b) = [sin a cos b + cos a sin b]. (10.24c)

Complex exponentials Ae-i t tracks position and velocity using Phasor Clock.
Recall discussion of phasor diagram in Fig. 10.5b. Real and imaginary give position and velocity.

Complex numbers add like vectors.
Physics of wave interference involves the addition or subtraction of oscillating signals. If the signals

are represented by complex numbers then you simply add (or subtract) their Cartesian components.

zsum = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')

zdiff  = z  z' = (x + iy)  (x' + iy') = (x  x') + i(y  y')

Before adding, convert z and z' to Cartesian (x,y) form if given in polar form z=rei  and z'=r'ei '. Radius r of

a vector z is its magnitude or complex absolute value |z|. Square |z|2 is proportional to energy or intensity.

|z| = r = (x2 + y2) = ([x - iy][x + iy]) = (z*z)

We write |z|2 as product of z and its complex conjugate z* = x - iy =re-i  to derive radius |zsum| of a vector

sum zsum or radius |zdiff| of a difference zdiff. It is an easy way to get the well-known cosine laws.
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zSUM = z +  z ( )* z +  z ( ) = rei +  r ei   ( )
*

rei +  r ei   ( ) = re i +  r e i   ( ) rei +  r ei   ( )

           = r2 +  r 2 + r  r ei   ( ) + e i   ( )( ) = r2 +  r 2 + 2r  r cos   ( )
(10.25a)

zDIFF = z  z ( )* z  z ( ) = r2
+  r 2 2r  r cos   ( ) (10.25b)

Vector diagrams of sum, difference, and product of complex z and z  are shown in Fig. 10.6.

x =�� z

y =�, z φr

 �!

z

 �! z z+z
φ

z

 �! z

z z
φ

φ+φ

z

z z−z

Sum
                        Differenceand

Productφ z
z

x=�� z

y=�, z

φ φ

Fig. 10.6 Parallelogram diagonals are sum zsum=z+z' and difference zdiff=z-z' vectors.

Complex products provide 2D rotation operations.
A product zz' of two complex numbers expressed in Cartesian form as z = x + iy and z'= x'+ iy' is

z z' = (x + iy) (x' + iy') = [xx' - yy'] + i[xy' + yx'].

It is simpler if the numbers are expressed in polar form as z = r ei  and z' = r' ei '.

z z' = ( rei  )( r'ei ' ) = r r' ei( + ').  (10.26)

Note that multiplication results in addition of exponents and a sum of polar angles. Radii multiply to

give a product rr' but angles add to give a sum (  + '). You might imagine z rotating vector z' by  radians or

that z' rotates z by ' radians. Consider in detail a rotational operator ei  on a vector z =(x + iy).

ei ·z = (cos  + i sin )·(x + iy)= x cos   y sin  + i(x sin  + y cos  ) (10.27a)

Ch. 5 2-by-2 rotation matrix R  (Fig. 5.3d) acts on a 2D vector r to give results precisely similar to ei ·z.

 
R

+
ir = (x cos ysin )êx + (x sin + y cos )ê y (10.27b)

     

 

cos sin

sin cos
i

x

y
=               

x cos ysin

x sin + y cos
(10.27c)

Complex products set initial values

Phase angle - t of phasor e-i t rotates clockwise with time. Multiplying e-i t by a complex amplitude

A =|A|ei  sets its phase back by angle  and its radius to |A|. Amplitude A is the initial value x(0)=|A|ei .

x(t)=Ae-i t = x(0)e-i t = |A|ei e-i t = |A|e-i( t- ) (10.28)

Such products set initial values of oscillator clocks. A positive angle  is a phase lag since it moves the

phasor counter-clockwise and sets its clock back. A negative angle = | | gives a phase lead.
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Complex products provide 2D “dot”(•) and “cross”(x) products.
Consider any two vectors A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.

A* B = (Ax + iAy )*(Bx + iBy ) = (Ax iAy )(Bx + iBy )

         = (Ax Bx + AyBy )+ i(Ax By AyBx ) = A • B + i | A B |Z (x ,y)

(10.29)

Real part is scalar or “dot”(•) product A•B. Imaginary part is vector or “cross”( ) product, but just the Z-

component normal to xy-plane. To better understand this math trickery, we rewrite A*B in polar form.

A* B = ( A ei A )*( B ei B ) = A e i A B ei B = A B ei( B A )

         = A B cos( B A)+ i A B sin( B A) = A • B + i | A B |Z (x ,y)

(10.30a)

Standard 3D definitions of dot(•) and cross( ) products of 3D vectors are precisely similar.

A • B = A B cos( A
B ) | A B |= A B sin( A

B ) (10.30b)

Expansion (10.24) of -angle a + b = A
B
= B A  relates rei  forms (10.30) to xy-forms in (10.29).

 A • B = A B cos( B A)

= A cos A B cos B + A sin A B sin B

=            Ax Bx             +            AyBy

| A B |= A B sin( B A)

= A cos A B sin B A sin A B cos B

=            Ax By                       AyBx

Complex deriviative contains “divergence”( •F) and “curl”( xF) of 2D vector field

By relating (z,z*) to (x=Rez,y=Imz) we may define a z-derivative dz
df and “star” z*-derivative dz*

df .

z = x + iy

z*
= x iy

x =2
1 (z + z )

y =2i
1 (z z )

dz
df
=   z

x
x
f
+ z

y
y
f  =2

1
x
f

2
i

y
f

dz*
df

= z*
x

x
f
+ z*

y
y
f
=2

1
x
f
+2

i
y
f

(10.31)

Derivative chain-rule shows real part of dz
df has 2D divergence •F and imaginary part has curl F.

dz
df
=dz

d ( fx + i fy ) =2
1 ( x

f i y
f )( fx + i fy ) =2

1 ( x
fx + y

fy )+2
i ( x

fy

y
fx ) =2

1
•F +2

i | F| (10.32)

Now we can invent source-free 2D vector fields that are both zero-divergence and zero-curl by taking any

function f(z) and conjugating it (change all i’s to –i) to give f*(z*) for which dz
df *

= 0 . For example, if f(z)=a·z

then f*(z*)=a·z*=a(x-iy) is not a function of z so it has zero z-derivative, hence zero •F and zero | F| .

F=(Fx,Fy)=(f*
x,f

*
y)=(a·x,-a·y) has zero divergence:  •F=0  and has zero curl: | F|=0 . (10.32)

A plot of vector field F=(f*
x,f

*
y) =(a·x,-a·y) in Fig. 10.7 shows a divergence-free laminar (DFL) flow field.

Complex potential  contains “scalar”( F= ) and “vector”( F= xA) potentials

Any DFL flow field F is a gradient of a scalar potential field    or a curl of a vector potential field A.

F= F= A
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There is a complex potential (z)= (x,y)+iA(x,y) whose z-derivative is f(z) and it comes with its complex

conjugate  
*(z*)= (x,y)-iA(x,y) whose z*-derivative is the f*(z*) that we use to plot DFL flow fields F.

f (z) =
dz
d  (10.33a) f (z ) =

dz
d  (10.33b)

Derivative dz
d  by (10.31) has 2D gradient =

x

y

of scalar  and curl A =
y
A

y
A

of vector A.

dz
d

=
dz
d ( iA) =2

1 ( x+i y )( iA) =2
1 ( x +i y )+2

1 ( y
A i x

A) =2
1

+2
1 A (10.34)

Some more math trickery has “vector-A” be just a “Z-component” A=Azez normal to the complex (x,y)-plane.

So A(x,y)=Az(x,y) is treated as a single function of (x,y) like scalar (x,y). Also, a mathematician definition for

force field F=+  replaces our usual physicist’s definition F=- U of (6.9). (No annoying (-)-sign for us now!)

To find = +iA we integrate f(z)=a·z to get  and isolate real (Re = ) and imaginary (Im =A) parts.

=                  + i  A = f dz = az dz =2
1 az2

=2
1 a(x + iy)2

  =2
1 a(x2 y2) + i  axy

(10.35a)

Note that either part gives the whole field F. The factors 
 2
1 in (10.34) reflect this elegant symmetry.

=
x

y

=
x2

a (x2 y2)

y2
a (x2 y2)

=
ax

ay
= F   (10.35b) A =

y
A

y
A

=
y axy

y axy
=

ax

ay
= F (10.35c)

Scalar static potential lines =const. and vector flux potential lines A=const. define a field-net in Fig.10.7.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
=  Φ   +i A

Fig.10.7 Complex field f(z)=z of F=(x,-y) vectors on potentials of static =(x
2
-y

2
)/2 and flux A=xy.
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z2

z1 z1

z2

Φ(x,y) Φ(x,y)

Fig. 10.8 Stereo-3D view of Fig. 10.7( (z)=z2/2) plots static potential  normal to xy-axes.

Complex integrals  f(z)dz count “flux”( Fxdr) and “vorticity”(  F•dr)

Integral f(z) (10.35a) between point z1 and point z2 in Fig. 10.8 is potential difference = (z2)- (z1)

between the end-points. In DFL fields,  is independent of the integration path z(t) connecting z1 and z2.

   

= (z
2

) (z
1
) = f (z)dz

z1

z2
= (x

2
, y

2
) (x

1
, y

1
) + i[A(x

2
, y

2
) A(x

1
, y

1
)]

                                             =                            + i            A

(10.36)

The real part  of  is work 
    

Fidr
1

2 done pushing r up a hill in Fig. 10.8. (Now force F=   points up-

slope.) Since F=(f*
x, f

*
y) is plotted using f*(z*), we set f(z)=(f*(z*))* to get real and imaginary parts of f(z)dz.

    

f (z)dz = f (z )( ) dz = f (z )( ) dx + i dy( ) = f
x
+ i f

y( ) dx + i dy( ) = f
x

i f
y( ) dx + i dy( )

             = ( f
x

dx + f
y

dy) +i ( f
x

dy f
y

dx)

             =         Fidr       + i F driê
Z
=         Fidr       + i Fidr ê

Z

             =         Fidr       + i   FidS                 where:      dS = dr ê
Z

(10.37)

Real part 
    

Fidr
1

2  sums F projections along path vectors dr to get  in (10.36). Imaginary part 
    

FidS
1

2
= A

sums F projection across dr that is, it sums flux thru surface elements dS=dr eZ normal to dr to get A.

One power-law field f(z)=azn lacks a power-law potential
  

(z)=
n+1
  a

z
n+1 . It is 

  
f (z)=

z
a
= az 1 . Its integral is

a logarithmic potential (z)=a·ln(z)=a·ln(x+iy). (Recall (6.11).) Use ln(a·b)=ln(a)+ln(b), ln(ei )=i , and z=rei .

(z) = + iA = f (z)dz = z
a dz = a ln(z) = a ln(rei ) = a ln(r)+ i a (10.38)

Potential a·ln(z) is the field of a line of charge q if a=q is real and a line of current J if a=iJ is imaginary. Fig.

10.9a is a diverging F-field of unit charge (q=1) and Fig. 10.9b is a curling F-field of unit current (J=1). Line

charge F-field is like an electric E-field. Line current F-field is like a magnetic B-field of a wire. It is a vortex.
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Field:

f*(z*)=-i/z*=-ieiθ/r

F(x,y)=(y,-x)/r2

Potential:
φ(z)=i ln z
        = θ  +i ln r

      = Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z

Field:

f*(z*)=1/z*=eiθ/r

F(x,y)=(x,y)/r2

Potential:
φ(z)=ln z
        =ln r+iθ
      = Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Fig. 10.9 Fields due to a unit Z-line-source normal to center. (a) Real source a=q=1. (b) Imaginary a=iJ=i.

F-field and radial streamlines (A=  =const.) diverge normal to equal-  circles ( =r =const.) in Fig. a. F-field

and circular streamlines (A=r =const.) curl clockwise normal to radial equal-  lines ( =  =const.) in Fig. b.

(The clockwise (-i)-sense of rotation results from plotting f*(z*)=-i/z* as our (*)-convention requires.)

Stereo-3D potential plots of real-line-source field shown in Fig. 10.10a show mathematical structure

of its  and A potentials that lets us compare them to imaginary-line-source potentials in Fig. 10.10b. Real

part =ln(r) of (10.38) for real (a=1)-source in Fig10.10a is a surface like a morning-glory. Blue-(A= =const.)

-streamlines stream down its throat normal to ( =r =const.) level circles.

Below that -vs-(x,y)-plot is a 3D A-vs-(x,y)-plot for the same real source in Fig. 10.10a. Imaginary

part A=  of (10.38) gives radial steps that are level lines of a single helix or helicoid. Red-( =r =const.)-lines

stream up its spiral staircase normal to (A= =const.) steps. At the top step A= =  , above the –X-axis, is a

“waterfall” of red lines falling by A=2  straight to bottom helical step A= =- . This 2 i-fall of complex

potential (z) by =i A=2 i at =±  equals the loop integral of f(z) from =-  to =+ .

 
= i A = f (z)dz = z

dz
= 2 i (10.39)

Imaginary part A of a loop integral counts real source (“flux”) since loop flux is Im
   

f (z)dz  in (10.37). Real

part = Re
    

f (z)dz = Fidr  counts imaginary source (“vorticity”) since only that makes work around a loop,

that is, perpetual motion! In Fig. 10.10b,  and A switch roles to make imaginary-line-source-potentials.



©2008 W. G. Harter Unit 1 Classical Momentum and Energy         131

Field:

f*(z*)=1/z*=eiθ/r

F(x,y)=(x,y)/r2

Potential:
φ(z)=ln z
        =ln r+iθ
      = Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)
1-pole(flux) 1-pole(flux)

Fig. 10.10(a) Real unit line-source (a=1) with diverging F-field resembling E-field of electric line-charge.



©2008 W. G. Harter Chapter10. Exponentials and complex phasors 132

Field:

f*(z*)=-i/z*=-ieiθ/r

F(x,y)=(y,-x)/r2

Potential:
φ(z)=i ln z
        = θ  +i ln r

      = Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z

Φ(x,y) Φ(x,y)
1-pole(vortex) 1-pole(vortex)

A(x,y) A(x,y)
1-pole(vortex) 1-pole(vortex)

Fig. 10.10(b) Imaginary line-source (a=i) with curling F-field resembling B-field of electric line-current.
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Complex derivatives give 2D multipole fields
Of all integer-power-law field functions f(z)=zn of z only a/z =az-1 has a non-power-law multi-valued

integral and potential (z)= az 1dz= a ln z (10.38) and non-zero flux-work-loop integral 
 

az 1dz=2 ia (10.39).

This special f(z)=az-1 is a 2D line monopole field and (z)= a ln z is its monopole potential of source strength a.

f 1- pole (z)=
a

z
=

d 1- pole

dz
(10.40a) 1- pole (z)= a ln z  (10.40b)

Now let these two line-sources of equal but opposite source constants +a and –a be located at z=± /2

thus separated by a small interval . This sum (actually difference) of f1-pole-fields is called a dipole field.

f dipole (z)=
a

z + 2

a

z 2

=
a

z2
4

2

dipole (z)= a ln(z 2 ) a ln(z + 2 ) = a ln
z 2

z + 2

If interval  is tiny and is divided out we get a point-dipole field f2-pole that is the z-derivative of f1-pole.

f 2- pole
=

a

z2
=

df 1- pole

dz
=

d 2- pole

dz
(10. 41a) 2- pole

=
a

z
=

d 1- pole

dz
(10. 41b)

A point-dipole potential 2-pole (whose z-derivative is f2-pole) is a z-derivative of 1-pole. Pair (10. 41) looks like a

Coulomb force (9.1) and potential (9.2) of 3D point monopoles. However, 2D dipole field (10. 41a) is quite

different as is 2D potential (10. 41b) whose =const. and A=const. lines make a circle-net in Fig. 10.11.

2- pole
=

a

z
=

a

x + iy
=

a

x + iy

x iy

x iy
= 

ax

x2
+y2

+ i
ay

x2
+y2

=
a

r
cos i

a

r
sin

                                                     = 2- pole
+ i A2- pole

(10.42)

(Note that complex z=x+iy is cleared from the denominator by using z*=x-iy to give real r2= z*z=x2+y2.)

Scalar potentials
Φ=(a/r)cos θ=const.

a/Φ
θ

Vector potentials
A=(a/r)sin θ=const.

a/A

r

r=(a/Φ)cos θ

r=(a/A)sin θ

r

Field:

f*(z*)=1/z2*=ei2θ/r2

F(x,y)=(cos2θ,sin2θ)/r2

Potential:
φ(z)=1/ z

=(cosθ)/r+i(sinθ)/r

=     Φ        +i    A

Fig. 10.11 Dipole F-field f(z)=1/z2 and scalar potential ( =const.)-circles orthogonal to (A=const.)-circles.
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Φ(x,y) Φ(x,y)
2-pole 2-pole

Fig. 10.12 Stereo 3D plot of dipole (z)=1/z scalar potential (x,y) with A-streamlines between poles.

Complex power series are 2D multipole expansions
A z-derivative turns 1-pole fields into 2-pole fields in (10. 41). It makes a copy of 1-pole in (10. 40) with a

sign change and puts the (-)copy very near the original. What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f4-pole and potential 4-pole, each a z-derivative of f2-pole and 2-pole.

f 4- pole
=

a

z3
=

1

2

df 2- pole

dz
=

d 4- pole

dz
(10.43a) 4- pole

=
a

2z2
=

1

2

d 2- pole

dz
(10.43b)

Fig. 10.13 shows 4-pole structure. Two + -poles loom above Y-axis and two - -poles lurk below X-axis . The

F-field vectors and their A-streamlines are shown running at 90° to -equipotential lines in Fig. 10.13.

X X

Φ(x,y) Φ(x,y)
4-pole 4-pole

Fig. 10.13 Stereo 3D plot of quadrupole (z)=1/z2 scalar potential (x,y) with A-streamlines between poles.
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Field:

f*(z*)=1/z3*=ei3θ/r3

F(x,y)=(cos3θ,sin3θ)/r3

Potential:
-2φ(z)=1/z2

=(cos2θ)/r2+i(sin2θ)/r2

=     Φ        +i    A

Fig. 10.14 F-field f(z)=1/z3 of 4-pole with scalar ( =const.)-equipotentials normal to (A=const.)-streamlines.

A field f(z) with sources only at origin (z=0) or at infinity (z= ) may be given by power series that

generalize Maclaurin series derived in (10.11) by using both positive and negative powers z±n. Series a±nz
±n is

called a Laurent series or multipole expansion (10.44) of a given complex field function f(z) around z=0. All

field terms am-1z
m-1 except 1-pole 

 z

a
-1 have potential term am-1z

m/m of a 2m-pole at z=0 (z= ) for m<0 (m>0).

     

 

f (z) = ...a 3z 3  +   a 2z 2  +    a 1z 1 +     a0    +      a1z    +     a2z2   +    a3z3   +    a4z4  +    a5z5  + ...

         22-pole      21-pole       20 -pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole   

              at z=0        at z=0          at z=0        at z=      at z=       at z=       at z=      at z=      at z=    

(z) = ...
a 3

2
z 2

+  
a 2

1
z 1 +   a 1 ln z  +     a0z   +    

a1

2
z2   +  

a2

3
z3   +   

a3

4
z4   +  

a4

5
z5

+  
a5

6
z6  + ...

(10.44)

The unique 1-pole(20-pole) -term 
  
a

1
ln z is not a constant a-1z

0=a-1. (Constant-  has no field:
  
f =

dz
d
=

dz

da
1 =0 )

Also a 1-pole at z=  gives zero field near z=0. However, a 21-pole at z=  gives a constant field f(z)=a0 near

z=0. A quadrupole (22-pole) at z=  gives the linear field f(z)=a1z shown if Fig. 10.7, but a 22-pole at z=0 gives

the field a-3z
-3 in Fig. 10.14. Octupoles (23-poles) at z=  (or z=0) give a2z2 (or a-4z

-4), and so on for m=4,5,…
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The potential -expansion is most useful for revealing multi-pole structure. A negative power -term

a-m-1z
-m/m belongs to a 2m-pole at z=0. A positive power -term am-1z

m/m belong to a 2m-pole at z= . Pole field

geometry involves mapping z-points onto a sphere so z=0 is its North Pole and z=  is its South Pole in Fig.

10.15. There a stereographic projection maps a point z=x+iy on the z-plane tangent to North Pole into a point

w=1/z=u+iv in the inverse w-plane tangent to the South Pole. The map geometry uses an inscribed rectangle.

A pair of red unit circles |z|=1 and |w|=1 map into each other. Any point z inside the |z|=1 circle maps into a

point w outside the |w|=1 circle as shown and vice-versa outside z maps to inside w.

z=x+iy
   =1/w

w=u+iv
   =1/z

1

N

S

z-plane

w-plane

|w|=cot θ/2=|z|-1

|z|=tan θ/2=|w|-1

1
2

1
2

θ/2

θ/2

θ/2

cos  θ/2

sin  θ/2

θ

N

S

sin2  θ/2

cos2  θ/2

 Fig. 10.15 Stereographic projection of z-plane through a unit-diameter sphere to inverse 1/z=w-plane.

Replacing z with w=z-1 in (10.13) switches positive multi-pole-m terms in potential  with negative ones.

(z) = ...
a 3

2
z 2  +

a 3

2
z 2  +  

a 2

1
z 1  +   a 1 ln z   +     a0z    +    

a1

2
z2    +  

a2

3
z3    + ...  (from (10.44))

(w) = ...
a 3

2
w 2

+
a 3

2
w 2

+  
a 2

1
w 1 +   a 1 ln w +     a0w  +    

a1

2
w2   +  

a2

3
w3   + ... (with z=w-1)

        = ...
a2

3
z 2    +

a1

2
z 2     +     a0z 1   a 1 ln z  +    

a 2

1
z  +    

a 3

2
z2  +  

a 3

2
z3  + ... (with w=z-1)

But, the unique monopole source term stays put with only a sign change (
  
ln

z

1
= ln z ) as seen in Fig. 10.16a.

Constant field f=a0 in (10.44) appears if there is a dipole at the South Pole and, vice-versa, a dipole field at the

North Pole appears to be a constant field near the South Pole as seen in Fig. 10.16b.

Of all 2m-pole field terms am-1z
m-1, only the m=0 monopole a-1z

-1 has a non-zero loop integral (10.39).

 
f (z)dz = a 1z 1dz = 2 ia 1  

a 1 =2 i
 1 f (z)dz

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.
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a 3 =2 i
 1 z2 f (z)dz  ,  a 2 =2 i

 1 z1 f (z)dz  ,  a 1 =2 i
 1 f (z)dz  ,  a0 =2 i

 1 f (z)

z
dz  ,  a1 =2 i

 1 f (z)

z2
dz  ,   

   

(+) monopole field
at North Pole

is (-) monopole field
near SouthPole

N

S

dipole field centered
at North Pole

is constant field
near SouthPole

N

S

(a) (b)

Fig. 10.16 Projective sphere view of North Pole (z=0) sources. (a) monopole (b) dipole.

         Cauchy integrals

Source analysis starts with 1-pole loop integrals 
   

z
1
dz = 2 i  or, with origin shifted 

   
(z a) 1

dz = 2 i .

They hold for any loop around point-a. A continuous function f(z) is just f(a) on a tiny circle around point-a.

 

f (z)

z a
dz =

f (a)

z a
dz = f (a)

1

z a
dz = 2 if (a)   (10.45a)         

 

f (a) =
1

2 i

f (z)

z a
dz   (10.45b)

The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

   

df (a)

da
=

1

2 i

f (z)

(z a)2
dz  , 

d2 f (a)

da2
=

2

2 i

f (z)

(z a)3
dz  ,  

d3 f (a)

da3
=

3!

2 i

f (z)

(z a)4
dz, ,

d n f (a)

dan
=

n!

2 i

f (z)

(z a)n+1
dz

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

 

f (z) = an
n=

(z a)n           where :  an =
1

2 i

f (z)

(z a)n+1
dz =

1

n!

dn f (a)

dan
    for :  n 0 (10.45c)

If the function f(z) has no poles inside the contour then only positive powers n>0 are needed in its expansion

and the series above reduces to a Taylor series or (if a=0) a Maclaurin series like (10.12) derived previously.

There the nth expansion coefficient an is given by nth derivative of f(z) as in (10.45c) above. Otherwise,

negative powers are needed with coefficients given by nth order pole loop integrals above.

This represents just a “tip of an iceberg” for an enormous subject of complex analysis. We shall use

only tiny portions of this grand mathematical subject, and later we will consider generalizations of complex

numbers to hyper-complex quaternions and spinor operators. This takes the analysis from a 2D framework

into a 3D and 4D description that is more like the one we live in.
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Below are details of dipole function geometry in Fig. 10.11 and the Lorentzian geometry discussed later.

1
b

b

1
b

b
θ
θ

θ

x=b cotθ

y=   r   sinθ
=(1/b)sin2θ

x2=b2 cot2θ=b2                =b2                   =            b2cos2θ
 sin2θ

1-sin2θ
    sin2θ

   b2

 sin2θ

x2+b2 =         =
   b2

 sin2θ
   b
       y

y =       b
       x2+b2

Common Lorentzian function I.
 part)

b

1
b

b

1
b

 1
2b

1 b

 1

  1

b

b

x=b cotθ

θ

 y =      r     sin θ
  =(1/b)cosθsinθ

π/2−θr=(1/b)sinθ
1
b

x2+b2=          =
   b2

 sin2θ
   x
       y

y =       x
       x2+b2

Common Lorentzian function II.

y

yx

x

x

1-b2

b=

1

2
5

b=

b=1

  1b=
1

   x             b cotθ                         b2 cosθ                       b2

      y      (1/b)cosθsinθ              cosθsin2θ          sin2θ
=                        =                    =

2
5

b=
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Complex damped oscillator

In (10.22) and (10.23) are oscillator equations with complex e i t solutions. Here is one more example.

Damped  HO equation :  
d2x

dt2
+ 2

dx

dt
+ 0

2x(t) = 0  has solution :  x(t) = x(0)e i t (10.46a)

Now a complex phase rate  depends on friction damping coefficient 2  as well as natural frequency 0.

   (
d2

dt2
+ 2

d

dt
+ 0

2)x(0)e i t
= 0 = ( 2 2 i + 0

2)x(0)e i t   has solutions :  
±
= i ± 0

2 2
= i ±

Complex rate  gives both a -slowed frequency = 0
2 2  and -decaying amplitude x(t) = x(0) e t .

x(t) = (decaying amplitude)e i(slowed frequency)t
= (x(0)e t )e i( )t   where:  = 0

2 2 (10.46b)

We choose the first root + so phase e i t
 moves clockwise like the phasor clock in Fig. 10.5b.

If damping is =0.2 then a 1Hz oscillator ( 0 =2 ) is slowed by only .05% of 2  to =6.280.

= 0
2 2

= 0 2
1 ( 2 / 0 )+ ... = 6.2831853 0.003183+ .. = 6.280002 + ... = 6.280001 (10.46c)

More significant is exponential decay of amplitude |x(t)| down to 5% of |x(0)| in time interval t5%=15 sec.

t5% =
3
=

3

0.2
= 15 (10.46d) t4.321% = =

0.2
= 15.708 (10.46d)

Fig. 10.17 shows the exponential decay envelope. An easy-to-recall 5% approximation is   e
3

0.05 . A more

precise one is e 0.04321 . Decay rate sounds negative so we use lifetime, usually a e-3=5% lifetime. For

more precise calculation, we use e-  = 4.321%-lifetime such as  / =15.708sec. in (10.46d).

A damping of =0.2 reduces its natural 1Hz frequency only by about 0.05% to 0.9995Hz. This tiny

frequency lag could be noticeable in a graph like Fig. 10.17 only after about 200 seconds, at which point it is

well off the page and way too damped-out to see.

Decay-to-5% Lifetime
Δt5%=3/Γ=15s

Fig. 10.17 Phasor z and corresponding coordinate versus time plot for 0=2  and =0.2
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Complex response to stimulus:Lorentz-Green’s function

A complex phasor e-i  t also describes stimulated damped harmonic oscillation (SDHO). Consider a

monochromatic (single-frequency s) accelerative stimulus as (t) = Ase
st added to motion equation (10.46).

   
 SDHO equation :

d2xs

dt2
+ 2

dxs

dt
+ 0

2xs (t) = Ase
i st            has solution : xs (t) = G

0
( s )Ase

i st

                              (- s
2 2 i s+ 0

2)G
0
( s )Ase

i st = Ase
i st  where : G

0
( s ) =

1

0
2 - s

2 2 i s

(10.47a)

This implies a response of the same frequency and an amplitude proportional to the stimulus. The

proportionality factor G is supposed to depend upon the stimulus frequency s, the natural frequency 0,

and damping constant , and not on the amplitude As of the stimulus since (10.47) is linear and ( 0, , As) are

constant. The oscillator is a 'black box' in Fig. 10.18 with response output due to input stimuli.

    

Stimulus
as(t)=Ase-iωst

Lorentz-Green's
Function

Gω(ωs)=|Gω(ωs)| e ιρ

Response
z=Gω(ωs) as

0
00

Fig. 10.18 Black-box diagram of oscillator response to monochromatic stimulus

The G
0
 is the Lorentz response function or classical Green’s function of the stimulus frequency s.

        G
0
( s ) =

1

0
2 - s

2 2 i s

= ReG
0
( s )+ i Im G

0
( s ) =| G

0
( s ) | ei

       (10.47b)

The Lorentz-Green’s function G is a constant amplitude for fixed stimulating frequency s and natural 
0
, so

xs(t) is called the steady-state stimulated response. The real and imaginary parts of the Green’s function are

the two parts of the following Cartesian form of the Green’s function G.

ReG
0
( s ) = 0

2
s
2

0
2

s
2( )

2
+ 2 s( )

2 (10.48a) Im G
0
( s ) =

2 s

0
2

s
2( )

2
+ 2 s( )

2 (10.48b)

Then the magnitude | G
0
( s ) |  and polar angle  of the polar form of G are the following:

| G
0
( s ) |=

1

0
2

s
2( )

2
+ 2 s( )

2
(10.48c) = tan 1 2 s( )

0
2

s
2

 

 
 

 

 
 (10.48d)

The angle  is the response phase lag, that is, the phase angle by which the response oscillation lags

continually behind the phase st( )  of the stimulating oscillation.

xs (t) =| G
0
( s ) | Ase

i st( )
(10.48e)

We visualize stimulus and response phasors as a pair rigidly rotating at rate s as shown in Fig. 10.19 with

fixed response amplitude |G|As and fixed angle  between them.
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ρ

ρ

Stim
ulus

R
esponse

Stimulus

Response
G(ws)

ReG(ωs)

ImG(ωs)

Real Axis

Imaginary
Axis

e -iω
s t

ρ
ωst

ωst-ρ

Initial time t=0 Later time t

Fig. 10.19 Oscillator response and stimulus phasors rotate rigidly at angular rate s.

Several views of the Lorentz Green’s function (10.48) are shown in Fig. 10.20 for a 1 Hz oscillator

with natural angular frequency 0 = 2 = 6.283 radian( ) / s  and decay constant = 0.2 / s . The complex G(
S
)

phasor is plotted ReGvs.ImG in Fig. 10.20a for a range (0< s <13 ) of stimulus angular frequency (or 0< s<2

Hz of standard frequency).  In Fig. 10.20b the response R= G(
S
)aS due to three G-function parts ReG(

S
)

(blue), ImG(
S
) (green),  and | G(

S
)| (gray dots) are plotted for the same range.

Resonance
Region

Resonance
Response

DC
Response

High w
Fall-Off

)

Resonance
Region

(FWHM)

(FWHM)

0.4

0.3

(a) (b)

Resonance Region

45

90

135

Fig. 10.20 Anatomy of oscillator Green-Lorentz response function plots
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The response magnitude |G(
s
)| is a dotted curve enveloping the others in Fig. 10.20b. It starts at

s = 0  small and fairly flat ( s << 0  is called the DC response region.) and peaks near resonance point

s = 0  and falls to zero for s >> 0  (high frequency fall-off). Real part ReG(
s
) dominates in the DC

region. ReG(
s
) reaches a peak just shy of where it intersects the rising imaginary part ImG(

s
). ImG(

0
)

achieves its peak value near resonance point s = 0 where ReG(
0
)=0 in the center of the resonance region

between two Full Width at Half-Maximum (FWHM) points s
FWHM

±( ) = 0 ±  shown in Fig. 10.21. These

s
FWHM

±( ) points are near ones that give max or min ReG(
s
), half-max ImG(

s
), and half-max |G(

s
)|.

Ratio of resonant response |G(
0
)| to DC-response |G(0 )| is an important number from (10.48).

AAF =
Resonant response 

DC response
=

| G
0
( 0 ) |

| G
0
(0) |

=
1 / (2 0 )

1 / 0
2

=
0

2
q

(10.49)

This ratio is about 15 in Fig. 10.20.  We will call this ratio the amplitude amplification factor (AAF) or

angular quality (q) factor of an oscillator. A Standard Quality Factor Q= 0/2 =q/2  is more commonly

known† just as standard frequency = /2  is more common than angular frequancy =2 .

When physicists speak of a Lorentzian function they generally mean an ideal version of Lorentz

response (10.47b) with very high-Q or near-resonant
  s 0

 conditions 0
2

s
2

0 s( )2 s .

G
0
( s ) =

1

0
2

s
2 i2 s

s 0

1

2 s

1

0 s i

1

2 0

1

i
=

1

2 0

L( i ) (10.50a)

A complex detuning-decay = -i  variable  is defined with the real detuning
  

=
0 s

 defined as before to

give an ideal Lorentzian L( )=1/  below. Imaginary part  / ( 2
+

2)  is the common “real Lorentzian.” The

ideal complex Lorentzian L( )=1/  (10.50) is like the complex dipole function (10.42). The 1/z-plots in Fig.

10.21 are known as Smith plots and are like the dipole net in Fig. 10.11 or 10.12.

   L( i ) =
1

i
= Re L      + i Im L     =   

2
+

2
  + i

2
+

2
=   | L |2   + i | L |2 (10.50b)

               =| L | ei
=| L | cos + i | L | sin =

cos

2
+

2
+ i

sin

2
+

2
 where: | L |=

1

2
+

2
(10.50c)

Fig. 10.21 Ideal Lorentzian in inverse rate space. (Smith life-time  1/  vs. beat-period 1/  coordinates)

† Peter W. Milonni, private communication.
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A circle of constant decay rate  and varying detuning frequency  has a diameter of1/  along the

vertical of the inverse frequency space in Fig. 10.21. As detuning approaches zero (perfect tuning) the polar

phase-lag angle angle  approaches /2 and the inverse detuning or beat-period1/  approaches infinity.

There appears to be circle of constant decay rate =0.2 in Fig. 10.20, however, it cannot be a perfect

circle, particularly in the DC region around origin.  Ideal Lorentzian (10.50), unlike the real one, does not have

an extended flat DC response region. Near-resonant condition 
  s 0

is broken if 
 s

is allowed to go to zero.

As decay rate   increases the1/  circle shrinks and becomes distorted by its DC “flat” at  =0 as

shown in a rather low quality (Q=1/4)-example having =2.0 and =2  in Fig. 10.22 below. Low quality

response does not have the intersection of ReG(
s
) and ImG(

s
) near FWHM points of ImG(

s
) or min-max

points of ReG(
s
) as is nearly the case for Fig. 10.20 and exactly the case for an ideal Lorentzian.

Fig. 10.22 Highly damped Lorentz-Green function plots with =2.0  and =2  .

Beats and lifetimes

Suppose at t = 0  a stimulus of angular frequency s  and amplitude a 0( )  is applied to a ‘cold’

oscillator z 0( ) = 0( ) . Then a sum of decaying solution (10.46b) and stimulated response (10.48d) applies.

z t( ) = ztransient t( ) + zresponse t( ) zdecaying t( ) + zsteady state t( )

 = Ae te i t
+G

0
( s )a(0)e i st

  (10.51a)

= Ae te i t
+ | G

0
( s ) | a(0)e

i st( )
(10.51b)

The initial condition z 0( ) = 0( )  demands that the complex transient amplitude A  be given by:

A = | G
0
( s ) | a(0)ei    for z(0) = 0 (10.51c)

Then A  cancels the stimulated response at t=0. But, as time progresses, the transient amplitude ztransient t( )

dies at rate  and the solution eventually grows up to be the steady state zresponse t( )  alone. An example with

a resonant stimulus (
  s

=
0
=2 ) is shown below in Fig. 10.23(a-b). Sub-resonant stimulus (

  s
<

0
) is shown

in Fig. 10.23(c-d) and super-resonant stimulus (
  s

<
0
) is shown in Fig. 10.24(a-b).
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Fig. 10.23 On Resonance (a)Response z-phasor lags =90° behind stimulus F-phasor.

( s= 0=2  and =0.2). (b) Time plots of Re z(t) and  Re F(t)

       

Beat Period
τbeat

(c) (d)

Fig. 10.23 Below Resonance (c)Response z-phasor lags =8.05° behind stimulus F-phasor.

( s=5.03, 0=2  , =0.2). (d) Time plots of Re z(t) and  Re F(t). Beats are barely visible.

The length of time it takes z t( )  to approach the steady state oscillation zresponse t( )  is the same as the

time it takes the transient part to die.  So, after the 5% lifetime, the solution is more than 95% steady state

response.  In Fig. 10.23b the transient dies after about t = 15sec.  or about 15 oscillations. The angular quality

factor q = 15  also gives the number of oscillations needed for the transient to decay to less than 5% and

establish 95% of a resonance. Dotted outline traces of the hidden transient are shown in Fig. 10.23 and are

proportional to the outline of the plot in Fig. 10.17.
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Note that each resonant response oscillation is 1/4-period to the right of its stimulating oscillation in

Fig. 10.23b, that is, it lags by 1/4-period. That is shown more clearly by the phasor diagram in Fig. 10.23a

where the z phasor is behind the stimulus F = a 0( )e i s t
 by 90° ( = / 2 ). This is consistent with (10.48a)

that has real part of the response vanish at resonance (ReG(
s
)=0), leaving  response at  s=  0  to be purely

imaginary ( | G
0
( 0 ) |·|a(0)|= Im G

0
( 0 )  ).

A stimulus frequency below resonance causes transient oscillatory beat modulation. In Fig. 10.24a-d

the angular frequency ( s = 5.026 ) of stimulus and steady state response is less than that of the transient

( 0 = 2 = 6.28..). So, the transient phasor ztransient  turns faster than response phasor  zss-response by

0 s = 1.25 radian / s , and it will "2 -lap" the slower phasor every 1.25/(2 ) seconds. This lap rate is

called the beat frequency beat= beat/2  .

beat = s 0 = s 0 / 2( ) = 0.199s 1
(10.52)

The corresponding beat period beat =1/ beat  is the frequency inverse.

beat = 1 / s 0 = 2 / s 0 = 5.01s (10.53)

 A beat period of about 5 sec. is seen in Fig. 10.23d. Beats are visible until the transient decays below about

5%. Then the poor z(t) phasor has lost 95% of its faster transient part and can no longer "lap" the stimulus

F-phasor. It is left with only the steady-state response part of (10.51a) and forced to "settle down" and lag

dutifully at angle  behind the all-powerful stimulating F-phasor.

In its "younger days" the transient phasor ztransient is big enough that the phasor sum z(t)= ztransient

+  zss-response  swells up as ztransient passes the stimulus F-phasor and zss-response (beat max) but then z(t)

shrinks as ztransient goes on to be opposite zss-response and nearly cancel it (beat min). The interference sum

z(t) experiences a beat every time ztransient  laps zss response , as shown in Fig. 10.25.

However, note how much smaller the transient phasor has become just in the time it takes to make a

beat. It is "aging" at rate  while the steady-state response-phasor zss-response is just stuck  behind its

stimulus F-phasor according to zss=G·Fstimulus. Soon z(t) falls into  zss response to stay as long as Fs lasts.

Number of beats per second measures the magnitude of the relative detuning s 0 = , but not the

sign of . The following example in Fig. 10.24 has the stimulus faster than resonance by | |=0.199s 1  but

with 0 s = 0.199/s  is the negative of (10.52). The beat number is the same but not the phase!

Fig. 10.24 Above Resonance (a)Response z-phasor lags =170.2° behind stimulus F-phasor.

( s=7.53, 0=2  , =0.2). (b) Time plots of Re z(t) and  Re F(t) show decaying beats.
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Fig. 10.25 Beat formation. Beat maximum occurs as transient phasor ztransient  catches up with F-phasor and

passes it. The next beat maximum will be smaller since ztransient is decaying.
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Comparing resonant and non-resonant cases

For the below-resonance case in Fig. 10.23c and Fig. 10.25, the response phase lag according to

(10.48d) is = 0.1405 , so zss response  (and eventually z(t) itself) is only 8.05° behind the stimulus. For the

above-resonance case in Fig. 10.24, the response zss response  and z(t) lag behind by about 180° ( =170.2°).

This is the signature of high frequency response G( ) : it becomes nearly  out of phase with the stimulus.

In contrast the low frequency or DC response G(0  ) is very nearly in phase with the stimulus.

Another difference between high and low frequency response is that high frequency response goes to

zero G( )~1/ S 
2->0 (as S-> ) and this helps explain the transparency of most materials to X-rays. Only

heavy metals have electrons whose resonant frequencies are high enough to respond significantly to X-rays.

In contrast the low frequency response approaches a constant value, namely

DC response = G(0  ) = 1/ 0 
2.  (10.54)

G(0  ) is just the response due to a static (DC) unit force. For high frequency oscillators, G(0  ) will be very

small, but if you multiply little G(0  ) by the big angular quality factor ( q= 0 /2  is the number of oscillations

in the time needed to achieve 95% of a resonance) then the result 1/2 0  is exactly the resonant response

amplitude G( 0 ). (Recall (10.49).) In other words, the DC response (10.54) is the average amplitude increase

that is achieved during each cycle of a unit resonant stimulus before the damping  really takes effect.

High-q resonant and non-resonant cases

For very high q quality oscillators (very low ) the resonant region ( 0± ) is so small that it may be

considered non-existent. Let us note that typical atomic values for the angular quality q-factor approach 108.

An atomic resonance beginning in Fig. 10.26b has a hundred million oscillations to go! Atoms and molecules

provide truly enormous resonant amplification factors!

In classical Hamiltonian systems we deal with this limiting case exclusively since damping is zero by

definition. For infinite q there are really only two values for the response phase lag angle: in-phase ( =0  ) and

out-of-phase ( =   ). The out-of-phase ( =   ) occurs above resonance ( s > 0) as shown in Fig. 10.26a. The

in-phase ( =0  ) case occurs below resonance ( s < 0) as shown in Fig. 10.26c. Exactly at resonance where

( s = 0) the steady state response and the transient are both infinite and opposite so they cancel each other,

and the z(t) builds up forever as shown in Fig. 10.26b. Each cycle of revolution adds another bit of amplitude

equal to the DC response (10.54) just as we explained above.

Fig. 10.26 Zero damping response ( 0=2  , =0)                       (Next page)

(a) Above resonance ( s=6.91)

(b) Resonance ( s=6.28) (Stimulus amplitude reduced to show response.)

(c) Below resonance ( s=5.65)
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Appendix 1.A Vector product geometry
Vectors have relative projections onto each other. Components x, y, or z are projections of r onto unit i, j,

and k. Power F•v =Fvcos  is a dot product cosine projection of F on v. Coriolis a= | v | =wvsin   is a sine-

like transverse projection called the cross product. Product A•B (or |AxB|) is cosine (or sine) of a relative

angle ( B- A) times length factor AB as drawn in Fig. 1.A.1.

The cosine or dot-projection may be given in Cartesian lab components (Ax=Acos A) Ay=Asin A).

A • B = AB cos B A( ) = A cos AB cos B + Asin AB sin B = AxBx + Ay By (1.A.1a)

The sine or cross-projection has a somewhat different or “crossed-up” form.

A B = ABsin B A( ) = A cos AB sin B A sin AB cos B = AxBy AyBx (1.A.1b)

A

Ax=Acos θA

θA
Ay=Asin θA

B

Bx=Bcos θB

θB

By
=Bsin θB

(a) Lab-relative

θA

B
θB θA

(b) A-relative (c) B-relative

θB−θA
θ

A Bcos(θB−θA)

A A
A

A B BA Bsin(θB−θA)

BA
BA

θA

Bθ

A

AB

AB

B

 A-longitudinal
component of B
BA=Bcos(θB−θA)

 A-transverse
component of B
BA =Bsin(θB−θA)

 B-longitudinal
component of A
AB=Acos(θB−θA)

θB

 B-transverse
component of A
 AB =Bsin(θB−θA)

B Acos(θB−θA)=

B A AB =-B Asin(θB−θA)=-A B

B

AB
AB

Fig. 1.A.1 Vector component geometry (a) Lab-relative. (b) A-relative. (c) B-relative.

Here A•B and AxB are numbers or scalars. Full AxB definition ((1.A.4b) below) is a vector perpendicular to

both A and B. (In Fig. 1.A.1, it would stick out of the page.) Also it happens that AxB is the area of the

vector parallelogram and 1/2AxB is the area of the A+B or A-B triangle as shown in Fig. 1.A.2.

 In Fig. 1.A.1b vector B refers to axes made of vector A and its perpendicular copy A  and vice-versa

in Fig. 1.A.1(c). Dot products are reflexive (A•B = B•A), but cross products must be anti-reflexive (AxB =-

BxA) since the B  vector is in a negative direction relative to A in Fig. 1.A.1(c). One way to display the

relation between the pair (A, A ) and the pair (B, B  ) is in a rotation matrix.

  
AB AB

A B A B

 

 
 

 

 
 =

cos BA sin BA

sin BA cos BA

 

 
 

 

 
 =

BA BA

B A B A

 

 
 

 

 
 

1

=
cos BA sin BA

sin BA cos BA

 

 
 

 

 
 

1

(1.A.2)

Algebraic definitions of A•B and AxB are based on the symmetric Kronecker function ij and the

totally anti-symmetric Levi-Civita function ijk defined as follows.

   
i
j
=

ij
=

1 if:  i = j

0 if:  i j
  (1.A.3a)       ijk

=
ijk
=

+1 if {ijk} is EVEN permutation of {123},

 -1 if {ijk} is  ODD  permutation of {123},

0                                            otherwise.

     (1.A.3a)

These are fundamental to tensor analysis and exterior calculus that will be introduced in Unit 3. They also

define scalar A•B and vector AxB products in useful ways for fast computer logic, as follows.
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  A • B =
ij
A

i
B

j
= A

i
B

i
i=1

3

j=1

3

i=1

3

    (1.A.4a) A B( )
k
=

ijk
A

i
B

j
=

j=1

3

i=1

3

kij
A

i
B

j
j=1

3

i=1

3

 (1.A.4b)

The notation Ck=(C)k denotes the kth component of a vector C.

Determinants and triple products

    Levi-Civita sums define the determinant detU of a matrix Uij. An expansion by minors is shown here.

detU =

U
11

U
12

U
13

U
21

U
22

U
23

U
31

U
32

U
33

=
ijk

U
1i
U

2 j
U

3k
i , j ,k

=U
11

U
22

U
23

U
32

U
33

U
12

U
21

U
23

U
31

U
33

+U
13

U
21

U
22

U
31

U
32

(1.A.5)

A triple vector product AxB•C is such a determinant made from a matrix of three vector components.

A • B C =

A
1

A
2

A
3

B
1

B
2

B
3

C
1

C
2

C
3

=
ijk

A
i
B

j
C

k
i , j ,k

= A
1

B
2

B
3

C
2

C
3

A
2

B
1

B
3

C
1

C
3

+ A
3

B
1

B
2

C
1

C
2

(1.A.6a)

                                                                = A
1

B C( )
1
+ A

2
B C( )

2
+ A

3
B C( )

3
(1.A.6b)

Minor expansion (1.A.5) is a (•)-product of A with ( )-product vector BxC. Base area |BxC| times altitude

(A projected onto normal BxC) equals the parallelepiped volume enclosed by A, B, and C.

Anti-symmetric -forms let us generalize geometry from 2-and 3-dimensions to N-dimensions.

Advanced mechanics has many dimensions. One mole (6·1023 particles) has at least 6·1023 dimensions and

two or three times that if the atoms move in 2D or 3D. So -forms are necessary!

Products of anti-symmetric -forms reduce to symmetric -forms by a LeviCivita identity.

ijk mnk
k=1

3

=
im jn in jm

=
kij kmn

k=1

3

(1.A.7)

A triple-cross-product formula A (B C) = (A •C)B (A •B)C  is a first application.

A (B C)( )
i
=

ijk
j ,k

3

A
j
(B C)

k
=

ijk
j ,k ,m ,n

3

mnk
A

j
B

m
C

n
= (

im jn in jm
)

j ,m ,n

3

A
j
B

m
C

n

                       = A
n
B

i
C

n
n

3

A
m

B
m
C

i
m

3

= (A •C) B( )
i

(A •B) C( )
i

The LC-identity (1.A.7) reduces each sum over k to dot-product terms.

B

A Area=base·altitude
         = B · A sin 

            = |A B|B

AB

A

Area=1/2 base·altitude

         = 1/2B · A sin 

            =1/2 |A B|

BA

B

A(a) (b) (c)
A+B

A-B

Fig. 1.A.2 Cross-product and area of (a)-(b) Parallelogram, (c) Sum triangle, (d) Difference triangle.
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