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Newton-Hamilton Classical  World
(Think Bang-Bang particles ! Waves are Illusory.)
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Doppler shifts tell all

Energy Momentum Dispersion
Matter waves vs. No-Matter waves
What is matter?
Why Schrodinger was wrong
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Wave dispersion
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Dispersion graphs
Wavevector geometry
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Unit 3. Relativity and Quantum Theory

Introduction

The preceding Units 1-2 on mechanics and wave resonance are designed to prepare for the main

course introduced in this Unit 3: modern physics of spacetime relativity and quantum wave mechanics. A

wave based geometric approach helps to understand special relativity (SR) and quantum mechanics (QM)

while it shows that these two pillars of modern physics are actually belong to the same subject!

SR and QM have been treated in separate texts as different and even inimical subjects. (SR is most

often found in E&M texts.) While advanced quantum field theory treatments do integrate special relativity

they do it in a mathematical way that lacks lucidity and physical intuition. The present development seeks

to improve the situation by appealing to the detailed geometry of wave interference.

Separated introductions to SR and QM lead to misconceptions for professional physicists as well

as for their students. In spite of its simple algebra, SR is also regarded as mysterious. Student comments

for SR and QM courses are typically, “Well, I didn’t understand it, but neither did the prof!” Comments

on a QM and SR derivation by an editor of the Journal of Modern Optics in 2003 illustrate the problem:

“Even Schroedinger probably never claimed to have a derivation, and we certainly don't

tell our students that we have one. (A) Hand-waving, inspired guess is more like it.”

A key problem has been a failure to clarify wave mechanics. Consider the editor’s next comment.

“It is quite arbitrary how one defines envelope and carrier parts of a wave. Usually this is done

only when all frequencies are nearby and all k-vectors are nearby. Then something like the

analytic signal formulation can be used to arrive at unique but still arbitrary definition.”

This statement exposes a pernicious blind spot in conventional wave analysis. Its resolution uses

Unit 2 expo-cosine relations (4.3) or (4.8) to clearly separate a wave envelope from its “carrier” phase.
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These are true regardless of how “nearby” are arguments a=(kax- at) or b=(kbx- bt) or their constituent

frequency-time a,bt and wavevector-space ka,bx terms. Identities (4.3) separate a wave’s modulus or

group envelope embodied by the cosine or sine factor that defines the outside envelope or “skin” of a

wave sketched in the figure below. The modulus is the factor that remains in the expression *  for

intensity while the phase part ei(a+b)/2 of  cancels the e
-i(a+b)/2 of * leaving real intensity | |

2
 or MOD | |.
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The latter governs real (Re ) and imaginary (Im ) “carrier”parts that are the inside “guts” of the wave

shown in the sketches below. (One may imagine a boa constrictor that has swallowed live prey.)

The speed of the MOD ±( ) wave factor is called group velocity. This external “skin” of the wave is

the only part visible to probability or intensity measurements of * . Meanwhile the speed of exponential

phase factor inside the envelope is called mean phase velocity or just plain phase velocity. Internal phase

“guts” may oscillate very rapidly and be difficult or impossible to measure directly.

|Ψ|=2cos(a-b)
2

Envelope or
Modulus ReΨ= |Ψ|cos(a+b)

2

Real Part or
“Is”

ImΨ= |Ψ|sin(a+b)
2

Imaginary Part or
“Gonna’Be”

OUTSIDES

+|Ψ|

−|Ψ|

INSIDES
Anatomy of a 2-State Wavefunction

Ψ=eia +eib =ei(a+b)/2 2cos(a-b)
2

Review and plan of attack: Relativity of pairs

Our plan of attack in Unit 3 for relativity and quantum theory has similar philosophy to that of

Unit 1 for classical Newtonian mechanics and Unit 2 for resonance. The idea is to develop the axioms,

rules, or laws of physics using relativity of elementary pairs. It is a kind of Occam-razor philosophy.

In Unit 1 we began with collisions between a pair of cars or a pair of bouncing super-balls and

developed the rules of classical mechanics. In Unit 2 we used a pair of coupled pendulums to establish the

rules of resonant energy transfer. Now in Unit 3 we use a pair of light waves to find the rules of relativity

and quantum mechanics. Geometry is a key part of this analysis in Unit 3 as in the others.

At first, the approach seems almost childish in simplicity. Who hasn’t seen (or been) a child who

puts two beetles together to see if they will fight (or whatever)? Relation between pairs is something that

first comes to mind when we see new things. Unfortunately, human egocentricity steers us toward a more

complicated pair, a single thing and you. That’s the adult analytic approach, isn’t it?
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Conventional “adult” mechanics books begin with axioms for a single mass or “particle” acted on

by “outside forces” (presumably you) to move according to Newton laws 1 thru 3. Detailed treatment of

all these laws at the start is usually not a favorite pastime for either instructor or student. The algebra or

calculus is tedious and it is difficult at first to arrange neat compelling and demonstrative experiments.

In contrast, Unit 1 starts off with just a single axiom (Newton law-1 of momentum conservation)

for particle-pair mechanics and derives collision kinematics by simple geometry using velocity-velocity

V1-V2 plots. This clearly exposes Galilean relativity symmetry and the logic of m1V1+m2V2 conservation.

An almost child-like geometric simplicity of particle-pair relativity economizes the logic.

Pair relativity easily finds results for neat first-day experiments by ignoring (until later) the “you”

and your “outside force.” Energy conservation is then proved using V1-V2 geometry and time symmetry.

An autonomous one-pair-at-a-time mechanics leads later to multi-mass force and potential relations that

also have an Occam-cut-to-the-chase logic that may be derived using plane geometry.

M1M1 m2m2
I

F

V1

V2

Unit 1
classical particle

pair

V1 - V2

plot
Ψ1 Ψ2

Unit 2
resonant pendulum

pair

Ψ1 - Ψ2

plot

MM

In Unit 2, resonance mechanics is based on autonomous pairs of coupled pendulums described by

phasor-pair plots of x1-V1 versus x2-V2 or complex 1 versus 2 plots. Again, the key idea is pair-relative.

Energy transfer rate is the product (| 1|| 1|sin ) of phasor amplitudes and sine of relative phase angle .

Autonomous one-phasor-pair-at-a-time mechanics have a direct cut-to-the-chase geometric logic that then

leads to multi-phasor wave mechanics, Fourier spectral analysis, and dispersion relations. Very important

is a logic for complex pairs of numbers and for U(2) pairs of complex phasors in the study of resonance.

Unit 3
laser continuous wave

(CW) pair
K  - K

dispersion
plot

600THz600THz

+1 +2 +3 +4-1-2-3-4

ω

ck

 slope = - u/c

K K 
ω

0

2ω
0

K phase

K group

600THz600THz

In Unit 3, the protagonists are a pair of colliding (counter-propagating) laser continuous waves

(CW) and laser pulse waves (PW). Here we contemplate what happens at the micron level in the collision

region of two bluish green beams of 600 THz dye laser, and arrive at an extraordinary claim. A pair of CW

light beams can show the rules of classical mechanics, quantum mechanics, and special relativity.
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What a claim! These green beams can expose the fundamental logic of three hard physics courses

CM, QM, and SR all for a fraction of the price one of them. And, like the late night TV ad, that’s not all!

For just a little more you can get EM (electro-magnetism) thrown into the bargain.

How can it be possible to conjure rules about mechanics of mass particles from light waves? A

1939 theory by Dirac and a 1950 experiment by Anderson provide some advance motivation for such

thought-experimentation. What Dirac theorized and Anderson demonstrated are results of colliding two

high-energy light beams. Crossing two gamma-( )-ray beams can convert light to matter plus anti-matter

in +  electron-positron pair production reactions. This primal chemistry is denoted as follows.

+ e + e+

The idea that 0.51MeV -rays can produce positronium pairs is a fairly hum-drum one for high-energy

physicists, but it should be a mind-boggling Genesis-moment for any thinking student of physics.

e+-e−  pair-production
e−e+

Feynman graphs
and

dispersion plots

γ-ray pair

ck

ω

-mc2/h

+mc2/h

Now green 600 THz lasers do not produce positronium matter. The -frequency mc
2
/h=0.1ExaHz is

about a million times more than our lasers can go. (That’s just as well given current world politics!) But,

any two lasers can produce something that obeys symmetry conditions for matter waves, and it is those

symmetry “laws” and geometry that underlie all our mechanics whether classical, quantum, relativistic, or

electromagnetic. CW laser beams may not be matter but they do expose some of its kinematics.

Ideal CW-laser pairs help us derive fundamental relativistic or quantum concepts and formulas by

ruler and compass in just a few steps. A number of concepts, quantities, and relations are exposed in Unit

3 by wave geometry. These include longitudinal Doppler shifts, Einstein-Lorentz-Minkowski frames,

time dilation, length contraction, stellar aberration, transverse Doppler effects, mass-energy-momentum

dispersion relations, Legendre-Lagrange-Hamilton-Poincare relativistic contact transformations, Compton

recoil shifts, Compton scattering, polarization and spin transformation, acceleration by frequency chirps,

Einstein wave-elevators, and quantum count-rate covariance.

According to a historical footnote given to me by Dudley Herschbach, Einstein became fascinated

with ruler and compass geometry when he was just five years old. We can only guess the age Euclid was

when he first picked up a Babylonian compass. In any case, a ruler and compass is child’s play, first and

foremost, and therein lies a certain pedagogical power.

We cannot know if either of these gentlemen would welcome a geometric approach to relativity

and quantum theory. I would like to think so, but it’s possible they might have taken a Bourbakian view

and found all these pictures to be just so childish. If so then it’s their loss and our gain!
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Chapter 1 Continuous Wave (CW) vs. Pulse Wave (PW) functions

The standard units of time t and space x are seconds and meters. Pure waves are labeled by inverse

units that count waves per-time or frequency , which is per-second or Hertz (1Hz=1 s
-1

) and waves per-

meter that is called wavenumber   whose old units were Kaiser (1 K=1 cm
-1

=100 m
-1

). Inverting back

gives the period =1/   or time for one wave and wavelength =1/   or the space occupied by one wave.

Physicists like angular or radian quantities of radian-per-second or angular frequency =2  and

radian-per-meter or wavevector k=2  in plane continuous wave (CW) functions . (See Unit 1 Fig. 1.3.)

  
k, x,t =

k ,
x, t( ) = e

i(kx t)
= cos kx t( ) + i sin kx t( ) . (1.1a)

Sine or cosine are circular functions of wave phase (kx-  t) given in radians and defined here.

=
2

=
1

(1.1b) =
2

k
=

1
(1.1c)

They relate time  and space  parameters to per-time  or  and per-space k or  wave parameters.

Phase velocity for 1-CW

Spacetime plots of the real field Re k, x, t( )  for one CW laser light are shown in Fig. 1.1. The left-

to-right moving wave ei(kx t)  in Fig. 1.1(a) has a positive wavevector k while k is negative for right-to-

left moving wave ei( k x t)  in Fig. 1.1(b). Light and dark lines mark time paths of crests, zeros, and

troughs of Re k, x, t( ) . A zero-phase line (where kx-  t is zero) or crest line has slope c=Vphase.

k x t = 0 ,       or:     
x

t
= Vphase =

k
= (1.1d)

Each white line in Fig. 1.1 has a phase is an odd multiple (N=1,3,…) of /2 and marks a /2-interval.

k x t = ±N
2

 ,       or:     x = Vphaset ± N
2k

= Vphase t ± N
4

Slope or phase velocity Vphase of all lightwave phase line is a universal constant c=299,792,548m/s.

(Note tribute to Ken Evenson’s c-measurement in Unit 2.) Velocity is a ratio of space to time (x/t) or a

ratio of per-time to per-space ( / ) or (  /k), or a product of per-time and space ( )=1/( ).

The standard wave quantities of (1.1) are labeled for a long wavelength example (infrared light) in

the lower part of Fig. 1.1. Note that the Im k, x,t( )  wave precedes the Re k, x, t( )  wave. A simple

mnemonic is helpful, “Imagination precedes reality by one quarter.” and applies to combined waves, too.

Axioms for light: 2-CW vs. 2-PW

Beginning relativity courses paraphrase Einstein’s light speed axiom as in Fig. 1.2a, “Speed of a

lightning flash is c according to passengers of any train,” or simply, “Pulse wave (PW) speed c is invariant.” For
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critically thinking students, that is a show-stopper. It boggles the mind that something of finite speed

cannot ever be caught up to, indeed, cannot even begin to be caught.
i

k  = +1 ω = 1c
Infrared laser

(a)Right-moving wave ei(kx-ωt)       (b) Left-moving wave ei(-kx-ωt)

Space x

Ti
m

e 
ct

Space x

Ti
m

e 
ct

Krypton laser

k = +2
Krypton laser

k = - 2

ReΨ
ImΨ

ReΨ

ImΨ

ReΨImΨ

ω = 2c

ReΨ ImΨ

Space x

Ti
m

e 
ct

cr
es

t p
ath

 (p
ha

se
 =

 0)

Wavelength λ κ

Period τ ω=1/υ

Wavelength λ κ

Period τ ω=1/υ

ω

(c)Right-moving
k=+1

Fig. 1.1 Phasor and spacetime plots of moving CW laser waves. (a) Left-to-right. (b) Right-to-left.
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Occam’s razor can dissect the c-axiom into a less mind-boggling form. As Evenson viewed a

frequency chain of multiple “colors” of continuous wave (CW) laser beams, he assumed that, “All colors

have speed c.”  Had Einstein imagined trains viewing a 600THz (green) laser as in Fig. 1.2b, his c-axiom

might be, “CW speed is c according to passengers of any train while frequency and wavelength vary by a

Doppler effect that depends on velocity of the train,” or more simply, “All colors go c.”

A CW spectral component of a PW has a color variation with observer speed that a “white” PW

does not. A colored wave (CW) will blue-shift if you approach its source or a red-shift if you run away

from it. Doppler’s theory of acoustical wave frequency shift existed 200 years before radar, masers, and

lasers showed the ultra-precise 1
st
-order Doppler sensitivity of a coherent optical CW.

Also an optical Doppler shift depends on one relative velocity of source and observer while

acoustical Doppler depends on three absolute (or three relative) velocities involving source, observer, and

a “wind.”  This single-velocity simplicity of en vacuo optical Doppler shifts is crucial for relativity.

Consider a 600THz green wave from a 600THz source. One may ask, “Is it distinguishable from

another 600THz green wave sent by a 599THz source approaching or a 601THz source departing at just the

right speed? Or, could 600THz light, seen as we approach a fixed 599THz source, ever differ in speed from

600THz light seen as we depart a fixed 601THz source? How many kinds of 600THz light exist?”

Evenson’s axiom follows if one answers, “There is only one kind of each frequency (color) and

only one speed independent of source or observer velocity.” An undesirable alternative is to have many

different kinds of each color, corresponding to many ways to make each color by tuning source up (or

down) while moving out (or in). (In fact, one color illuminating a gas, liquid, or solid may involve two or

many varieties of mode dispersion with wave speeds ranging above or below c.) Evenson’s axiom

demands that light in a vacuum be one speed for all frequency. In short, light is dispersion-free.

If so, a PW must move rigidly at the speed c shared by its component CW colors. In this way one

derives Einstein’s PW law as a theorem arising from Evenson’s CW axiom. Occam wins one!

Astronomical view of CW axiom

It also relates to appearance of distant nebulae and the night sky. If any colors were even a fraction

of a percent slower than other frequencies, they would show up thousands or millions of years later with

less evolved images than neighboring colors. We might then enjoy a sky full of blurry colorful streaks but

would lose the clarity of Hubble astronomical images of colliding galaxies billions of light years away.

Spectroscopic view of CW axiom

Astronomy is just one dependent of Evenson’s CW axiom. Spectroscopy is another. Laser atomic

spectra are listed by frequency  (s
-1

) or period =1/  (s) while early tables list atomic lines from gratings

by wavenumber  (m
-1

) or wavelength =1/  (m). The equivalence of time and space listings is a tacit
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assumption in Evenson’s axiom. The axiom may be stated by the following summary of (1.1a-d).

c =  ·   = /   = /    = 1/(  · ) = c =299,792,548m/s (1.1)summary
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Sees Doppler blue shift Sees Doppler red shift

φ

φ

CW zeros precisely locate places where wave is not.

PW peaks precisely locate places where wave is.

Pulse wave (PW) train

Continuous wave (CW) train

(a) Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

(b) Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

Fig. 1.2 Comparison of wave archetypes and related axioms of relativity.

(a) Pulse Wave (PW) peaks locate where a wave is. Their speed is c for all observers.

(b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)
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An atomic resonance is temporal and demands a precise frequency. Sub-nanometer atomic radii

are thousands of times smaller than micron-sized wavelengths of optical transitions. Optical wavelength is

not a key variable in atomic dipole approximations that ignore spatial dependence of light.

However, optical grating diffraction demands precise spatial fit of micron-sized wavelength to

micron grating slits. Optical frequency is not a key variable for time independent Bragg or Fraunhofer

laws. Spatial geometry of a spectrometer grating, cavity, or lattice directly measures wavelength , and

then frequency   is determined indirectly from  by axiom (1.1). That is valid if the light speed c =  ·  is

invariant throughout the spectrum (and throughout the universe.)

A spectroscopist expects an atomic laser cavity resonating at a certain atomic spectral line in one

rest frame to do so in all rest frames. Each  or   value is a proper quantity to be stamped on the device

and officially tabulated for its atoms. Passersby may see output   Doppler red shifted to r   or blue

shifted to b . Nevertheless, all can agree that the device and its atoms are actually lit up and working!

Moreover, Evenson’s CW axiom demands that  and  must Doppler shift inversely one to the

other so that the product  ·  is always a constant c=299,792,458 m·s
-1

. The same applies to  and  for

which  · =1/c. Also, there is an inverse relation that exists between Doppler blue and red shifts seen

before and after passing a source. This is our second CW axiom. It involves time reversal symmetry.

Time reversal axiom

Atoms behave like tiny radio transmitters, or just as well, like receivers. Unlike macroscopic

radios, atoms are time-reversible in detail since they have no resistors or similarly irreversible parts.

Suppose an atom A broadcasting frequency A resonates an approaching atom B tuned to receive a blue

shifted frequency B = b A. If time runs backwards all velocity values change sign. Atom B becomes a

transmitter of its tuned frequency B = b A that is departing from atom A who is a receiver tuned to its

frequency A =  (1/b) B. Atom A sees A red-shifted from B’s frequency B by an inverse factor r=1/b.

 b=1/r (1.2)

Phase invariance axioms viewed in a classical way

Optical CW axioms may be based on deeper phase invariance principles. Elementary CW function

=A exp i(k·x- ·t) or its real part Re =A cos(k·x- ·t) has a phase angle =(k·x- ·t) that is regarded as

an invariant or proper quantity. Our rationale is that each space-time point of the wave has a phase clock

or phasor (Re , Im ) turning at angular frequency =2 · . Each phasor reading  could be stamped or

“officially” tabulated. All observers should agree on  even if Doppler shifts change frequency =2 ·

and wavevector k = 2  to new values ( ,k ) or if space x and time t also transform to (x ,t ).
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 k·x-  ·t =  = k ·x - ·t (1.3)

(Lorentz-Einstein transformations for both space-time (x,t) to (x ,t ) and inverse space-time ( ,k) to ( ,k )

are derived in Ch. 2 using CW axioms (1.1) and (1.2) in a few algebraic or ruler-and-compass steps.)

Historically, invariance (1.3) relates to classical Legendre contact transforms of Lagrangian L to

energy E or Hamiltonian H. Differential Ldt is Poincare’s action invariant dS or phase d  with an  factor.

  L = p x H (1.4a)
  d = dS = Ldt = p dx Hdt (1.4b)

Connecting (1.3) to (1.4b) requires quantum scaling relations p= k of DeBroglie and E=  of Planck.

Ch. 3 shows how such relations arise from CW axioms (1.1-2). Exact relativistic quantum and classical

mechanical relations are found in a few algebraic
ii
 or ruler-and-compass steps. Elegant wave-geometric

iii

interpretations of momentum, mass, energy, and Poincare’s invariant are exposed in Ch. 4 and Ch. 5.
iv

We surmised that Einstein might have liked geometric derivations since a compass first caught his

theoretical attention at an age of five.
v
 Perhaps, it might also appeal to Poincare who also discovered

relativity around the time of Einstein’s 1905 annus mirabilis. Poincare phase invariance (1.3) underlies

both CW lightspeed axiom (1.1) and time reversal axiom (1.2). Consider the =0 point.

k·x-  ·t = 0 (1.5a)

Solving gives phase velocity x/t (meters-per-second) equal by (1.1) to /  (per second)-per-(per meter).

 

x

t
=

k
= = c (1.5b)

Doppler shift ( b  and  k bk) leaves phase velocity invariant. Phase =(k·x- ·t) itself is invariant to

time reversal ( ( )  and (t t) ) and that supports (1.2), the inverse-Doppler relation b=1/r.

We find relativistic and quantum derivations based on classical mechanical laws to be clumsy at

best and wrong-way-to at worst. Simple wave interference with axioms (1.1-2) can unite relativity and

quantum theory. At the wave-phasor or “gauge” level, Nature may be seen as a big wave trick!

Comparing pulsed and continuous wave trains

It is instructive to contrast two opposite wave archetypes, the Pulse Wave (PW) train sketched in

Fig. 1.2a and the Continuous Wave (CW) train sketched in Fig. 1.2b. A CW is the more elementary

theoretical entity, indeed the most elementary entity in classical optics since it has just one value of

angular frequency =2 · , one value of wavevector k = 2 , and one amplitude A.

  

CW

k , x,t( ) = Ae
i(kx t)

= k, x,t (1.6)

The real part is the cosine wave Acos(kx t) shown in Fig. 1.2(b). Acronym CW fits cosine wave, as

well. If frequency  is in the visible 400-750THz range, then CW could also stand for colored wave.
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In contrast, the PW is a less elementary wave function and contains N harmonic terms of CW

functions where bandwidth N is as large as possible. Fig. 1.3 shows an example with N=12.

   

PW

N (k , )(x,t) = A(1+ e
i(kx t)

+ e
i2(kx t)

+ e
i3(kx t)

+ e
iN (kx t) ) (1.7)

An infinite-N PW is a train of Dirac (x-a)-functions each separated by fundamental wavelength =2 /k.

The  -spikes march in lockstep at light speed c= /k because of Evenson’s CW axiom (1.1).

  

PW

N (k , )(x,t)
N

A (x ct n )
n=

Delta functions have infinite frequency bandwidth and are thus impractical. Realistic PW trains apply

cutoff or tapering amplitudes an to the harmonic so as to restrict frequency to a finite bandwidth .

   

PW
x,t( ) = a

n
e

in(kx t)

n=0
= G x ct n( )

n=

   where:  a
n

1 for n >  (1.8)

One choice is the Gaussian taper an = e
n /( )

2

that gives Gaussian PW functions G( ) = e ( )
2

.

PW functions (1.8) involve an unlimited number of amplitude parameters an in addition to

fundamental frequency , while a CW function has a single amplitude parameter A. Thus, theory based

on CW properties is closer to an Occam ideal for axiomatic simplicity than one based on PW.

CW squares vs. PW diamonds in space-time plots

However, with regard to counter-propagating or colliding beams the PW appear in Fig. 1.4a to

have simpler properties than CW in Fig. 1.4b. PW have a simple classical Boolean OFF (0) over most of

space-time with an occasional ON (1) at a sharp pulse. On the other hand CW range gradually between +1

and –1 over most of space-time, but have sharp zeros (0) in between crest and trough. (A PW is designed

to make precise peaks that show where it is. A CW naturally has precise zeros that show where it is not.)

Interference between two colliding CW makes a square (P, G)-zero-grid that is subtler and sharper

than the left-right moving (L,R)-peak-diamond grid made by two colliding PW. One should understand

how this wave interference works to make these two archetypical types of wave space-time geometry.

Interference of colliding PW in Fig. 1.4a or Fig. 1.5b is wysiwye (What you see is what you

expect.). The pattern of interference for the sum of colliding CW in Fig. 1.4b and Fig. 1.5a is subtler. PW

paths in space-time (x,ct) resemble baseline diamonds in Fig. 1.5b like paths in the American baseball

sport. Meanwhile, CW zeros form Cartesian space-time squares in Fig. 1.5a with horizontal x-axial fixed

time-lines (ct=…1,2…) and vertical temporal ct-axial lines of fixed location (x=…1,2…).

PW peak diamonds seem simple but hide intricate networks of zeros near each peak. CW squares

make truly simple and precise lattices of standing wave zeros of given by (1.9), which is just a factored

sum of two equal-but-opposite colliding CW. Note that the group envelope factor cos(kx)( ) is zero on lines
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(kx/ +1/2=…0,1,2…) parallel to the ct-axis. The phase factor (e i t ) has a zero real part on lines of

simultaneous time (ct/ +1/2=…0,1,2…) parallel to the x-axis. (At lattice corners, both factors are zero.)

CW
k , +

CW
k , = A ei(kx t)

+ ei( kx t)( ) = 2Ae i t cos(kx)( ) (1.9)


��� 
��� 
���

���


���


���


���

�� 
��! 
��" 
��� 
��� 
���

��������

��������

��������

��������

��������

��������

��������

��� ��� 

���!���!

���"���"

��������

��������

(a)Pulse Wave (PW) #$��%�	�� |Ψ|
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� ReΨ
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� ImΨ

(b) CW components

Fig. 1.3. Pulse Wave (PW) sum of 12 Fourier  (a) PW parts: real ReΨ, imaginary ImΨ, and

       magnitude |Ψ|.      (b) CW phasor clocks plot real vs. imaginary

)*+, -.+/*,
(Zeros are diffuse)
Sharp peaks trace diamond grid

(a)Pulse Wave (PW) Addition

)*+, -.+/*,

Sharp zeros trace
                    square grid
                  (Peaks are diffuse)

(b) Continuous Wave (CW) Addition
L R

G

P

Time ct

Space
x

Left moving pulses Right moving pulses

Standing pulses

Left moving wave Right moving wave Standing wave

Space
x

Time ct

Time ct Time ct

Space
x

Space
x

Fig. 1.4 Wave Addition (a) 2-PW Boolean binary sum has 4 values (0,0),(0,1),(1,0),(1,1) and diamond grid
 of peak paths on a plane of zeros.    (b) 2-CW interference sum has value continuum and square grid of zeros.

CW wave-zeros vs. PW pulse paths

Phase and group wave zeros of 2-CW interference define a space-time wave-zero (P,G)-coordinate

grid for light waves in Fig. 1.5 and more general waves in Unit 2 Fig. 6.7. Vector P points along a phase



HarterSoft –LearnIt Chapter 1 Continuous and Pulse Waves © 2008 W. G. Harter     Unit 3 - 17

zero path and vector G points along a group zero path. They complement PW pulse peak or peak-path

(L,R)-grid based on vector L that points along a left moving peak path and a vector R that points along a

right moving peak path. The half-sum-and-difference relation of (P,G) to (L,R) is as follows.

P =
 2
1 (L + R) (1.10a)

G =
 2
1 (L - R) (1.10b)

The peak-path vectors {L,R) are then given by sum-and-difference of wave zero vectors {P,G).

L = (P + G) (1.10c)

R = (P  G) (1.10d)

Sum-and-differences are due to phase sum-and-differences. (Recall Unit 3 Intro or (4.3) of Unit 2.)

Comparing wave-like vs particle-like behavior

Relations (1.10) highlight wave-particle duality. First, Newton saw light as particle-like. Then

Young and Maxwell showed its wave-like nature. Finally, Planck, Einstein, and Compton found particle-

like behavior of “photon” quanta. The label “photon” is reserved for quantum field eigenstates having

decidedly more complicated behavior than is shown in semi-classical wave plots in Fig. 6.7 (Unit 2) or

colliding light waves in Fig. 1.5. Still the diamond left-and-right moving PW (L,R)-peak paths in Fig. 1.5b

might be thought of as paths of fictitious particles or “photon bunches” that are well localized in space-

time as they move at ±c in either direction. Each PW laser “spits” pulses (patooey! patooey!…) at 600Thz.

Optical pulse peaks do move like particles in between the points where “collisions” occur (with

very complicated wave interference). After that the “particles” seem to pass through each other or recoil

elastically. Newton wrote about optical interference behavior as crazy “light having fits.”

Square 2-CW (P,G) zero-paths in Fig. 1.5a are due to counter-propagating 600Thz CW waves

interfering wherever they exist in space-time. The wave between the zeros is delocalized in space-time

compared to the PW peaks but the square white zero-lines are extremely sharp as are vectors L=( ck, )

and R=(-ck, ) that determine motion of left and right CW component laser beams while vectors P=(0, )

and G=( ,0) determine the real wave-zero lattice of their 2-CW interfering sum.

It is important to note that these vectors, appropriately scaled, describe both time-vs-space (x,t)-

plots and Fourier inverse per-time-space or reciprocal space-time plots of frequency-vs-wavevector ( ,k).

A general example of this is derived and shown in Fig. 6.7 (Unit 2) where the plots are superimposed.

Note that a ( ,ck)
 

(ck, ) switch or else an (x,ct)
 

(ct,x) switch to the Newtonian format is needed in

order to make a CW lattice and reciprocal PW lattice coincide and that entails a (P,G)
 

(P,G) switch.

This is indicated in Fig. 1.5a to the right of the square space-time lattice.
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PW (L,R)-peak paths are “particle-like” and stand out in space-time for N-CW wave trains. Then

interference “fits” between pulses die off (to make Newton comfortable again.) But, CW (P,G)-zero paths,

in contrast, are “wave-like” with very sharp lines in space-time for maximally interfering 2-CW beats.

ω
0

= 2c

PW laser

Time
ct

Space
x0 0.5 μm 1.0 μmpatooey!.

(b) PW diamonds

PW laser
ω

0
= 2c

L R

G(ω vs ck)

P(ω vs ck)

CW Laser
  600 THz

CW Laser
  600 THz

Time
ct

Space
x0 0.5 μm 1.0 μm

1.67 fs

1.0 fs1 femtosecond
1.0 fs=10-15s

Period
τ=5/3 fs

Wavelength
λ =1/2 μm

1 micron
1.0 μm=10-6meter

(a) CW squares
G(ct vs x)

P (ct vs x)

Fig. 1.5 Space-time grids (a) 2-CW standing-wave-zero squares. (b) 2-PW diamond pulse peak paths.

The archetypical cases (a) and (b) in Fig. 1.5 are to be compared with the more nuanced or “in-

between” cases shown in Fig. 6.14 and Fig. 6.15 of Unit 2. Increasing the number of CW components

increases range  of frequency uncertainty but gives sharper interference peaks with reduced range t of

temporal uncertainty. In fact, the two are inversely related by the time-frequency uncertainty relation.

· t 1 (1.11)

Space-time and inverse per-space-time relativity is derived next in Ch. 2 using CW lightwave

zeros and compared to corresponding PW dynamics.
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Chapter 2 When Light Waves Collide: Relativity of waves in spacetime

Let us represent counter-propagating frequency-  laser beams by a baseball diamond in Fig. 2.1a

spanned by CW vectors for waves moving left-to-right (R on 1
st
 base) and right-to-left (L on 3

rd
 base).

R=K1=(ck1, 1)= (1,1)    (2.1a) L=K3=(ck3, 3)= (-1,1)  (2.1b)

Fig. 2.1 uses conventional (ck, )-plots for per-space-time and (x,ct)-plots for space-time. Both beams have

frequency = /2 =600THz(green), the unit scale for  and ck axes. For the L-beam, ck equals - .

Phase vector P=Kphase and group vector G=Kgroup are also plotted in ( ,ck)-space in Fig. 2.1b.

K phase =
K1 + K3

2
=

1

2

ck1 + ck3

1 + 3

    = P =

ckp

p

=
2

1 1

1+1
=

0

1

 (2.2a)

Kgroup =
K1 K3

2
=

1

2

ck1 ck3

1 3

   = G =

ckg

g

=
2

1+1

1 1
=

1

0

(2.2b)

Phase and group velocities of counter-propagating light waves may vary from c. These surely do!

Vphase

c
=

1 + 3

ck1 + ck3

=
2

0
= (2.3a)

Vgroup

c
=

1 3

ck1 ck3

=
0

2c
= 0 (2.3b)

The extreme speeds account for the square (Cartesian) wave-zero (WZ) coordinates plotted in Fig. 2.1c.

As noted for Fig. 1.5, the group zeros or wave nodes are stationary and parallel to the time ct-axes, while

the real-zeros of the phase wave are parallel to the space x-axes. The latter instantly appear and disappear

periodically with infinite speed (2.3a) while standing wave nodes have zero speed (2.3b).

Fig. 2.1d shows 2-way pulse wave (2-PW) trains for comparison with the 2-CW WZ grid in Fig.

2.1c. As noted for Fig. 1.3, a PW function is an N-CW combination that suppresses its amplitude through

destructive interference between pulse peaks that owe their enhancement to constructive interference.

Colliding PW’s show no mutual interference in destroyed regions. Generally one PW is alone on

its diamond path going +c parallel to 1
st
 baseline R=K1 or going –c parallel to 3

rd
 baseline L=K3.

V
1

c
=

1

ck
1

=
1

1
= 1 (2.4a)

V
3

c
=

3

ck
3

=
1

1
= 1 (2.4b)

But wherever two PW peaks collide, each of the CW pairs will be seen trying to form a square

coordinate grid that 2-CW zeros would make by themselves. This begins to explain the tiny square

“bases” seen at the corners of the space-time “baseball diamonds” in Fig. 2.1d simulation.

CW-Doppler derivation of relativity

Evenson’s CW razor-cut of Einstein’s PW axiom improves relativity development. However,

quantifying Einstein’s popular (and still common) derivation is difficult as is a step-by-step count for the
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CW derivation that follows. Let us just say that several steps are reduced to fewer and clearer steps. Most

important is the wave-natural insight that is gained and the wave mechanics that follows.

K pK 3
K 1

K g  ck

ω

2ω

ω

(b) Laser group and phase wavevectors
      (Per-space-time Cartesian lattice)

L=K 3 R=K 1

per-time
ω=2π ν

ω

2ω

� per-space
ck=2πc κ

space x

time ct Abs|Ψ|

Re Ψ Im Ψ

  (c) Laser Coherent Wave (CW) paths
         (Space-time Cartesian grid)

P

O

1st base

2nd base

3rd base

600Thz

Left-to-Right
Beam

600Thz

Right-to-Left
Beam

λ = 1 μm
2   4

  (d) Laser Pulse Wave (PW) Paths
       (Space-time Diamond grid)

space x

time ct

0

1
ω

1

0
ω

K g

Fig. 2.1. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d).

In fact, we could claim that a CW derivation takes zero steps. It is already done by a 2-CW wave

pattern in Fig. 2.2c that automatically produces an Einstein-Lorentz-Minkowski
vi
 grid of space-time

coordinates. Still we need logical steps drawn in Fig. 2.2a-b that redo the Cartesian grid in Fig. 2.1 just by
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Doppler shifting each baseline one octave according to c-axiom (1.1) (“Stay on baselines!”) and t-reversal

axiom (1.2) (“If 1
st
 base increases by one octave, 3

rd
 base decreases by the same.”)

So Fig. 2.2 is just Fig. 2.1 seen by atoms going right-to-left fast enough to double both frequency

= /2  and wavevector ck of the vector R on 1
st
 base (while halving vector L on 3

rd
 base to obey (1.2).)

R=K1=( ck 1, 1)= (2,2)    (2.5a) L=K3=( ck 3, 3 )= (-1/2, 1/2)  (2.5b)

The atom sees head-on R-beam blue-shift to frequency 1 =2 = 1 /2 =1200THz(UV) by doubling green

1= /2 = 3=600THz. It also sees the tail-on L-beam red-shift by half to 3 = /2= 3 /2 =300THz(IR).

The phase vector Kphase and group vector Kgroup are plotted in (ck , )-space in Fig. 2.2b.

K phase =
K1 + K3

2
=

1

2

ck1 + ck3

1 + 3

= P =

ckp

p

=
2

2 1 / 2

2 +1 / 2
=

3 / 4

5 / 4

 (2.6a)

Kgroup =
K1 K3

2
=

1

2

ck1 ck3

1 3

= G =

ckg

g

=
2

2 +1 / 2

2 1 / 2
=

5 / 4

3 / 4

(2.6b)

Phase velocity is the inverse of group velocity in units of c, and V group is minus the atoms’ velocity!

Vphase

c
=

1 + 3

ck1 + ck3

=
2 +1 / 2

2 1 / 2
=

5

3
(2.7a)     

Vgroup

c
=

1 3

ck1 ck3

=
2 1 / 2

2 +1 / 2
=

3

5
(2.7b)

Velocity u=V group =3c/5 is the atoms’ view for a lab speed of zero had by laser standing nodes. It is the

speed of the lasers’ group nodes (and its supporting lab bench!) relative to the atoms. Phase velocity V phase

=5c/3 is the atoms’ view for a lab speed of infinity had by lasers’ real wave zeros. The x-zero lines are

simultaneous in the laser lab but not so in the atom-frame. x-lines tip toward ct-lines in Fig. 2.2c.

Eqs. (2.5-7) use a Doppler blue-shift factor b=2. If each “2” is replaced by “b” then Eq. (2.7b)

yields a relation for the laser velocity u=V group relative to atoms in terms of their blue-shift b.

Vgroup

c
=

u

c
=

b 1 / b

b +1 / b
=

b2 1

b2
+1

(2.8a)

Inverting this gives the standard relativistic Doppler b vs. u/c relations.

b2
= 1+ u / c( ) / 1 u / c( )     or:    b = 1+ u / c( ) / 1 u / c( ) = 1+ u / c( ) / 1 u2 / c2 (2.8b)

First things first

It is remarkable that most treatments of relativity first derive second order effects, time dilation and length

contraction. Doppler and asimultaneity shifts are first order in u but treated second. Setting 2=b in (2.6)

using (2.8) gives vectors G = Kg = (a
d ) and P = K p = (d

a )  with dilation factor d = 1 / 1 u2 / c2  and

asimultaneity factor a=u·d/c. (So a and d may be derived first here, too, but in a wavelike way.)
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K phase =
2

b 1 / b

b +1 / b
=

(u / c) / 1 u2 / c2

1 / 1 u2 / c2
(2.9a) Kgroup =

2

b +1 / b

b 1 / b
=

1 / 1 u2 / c2

(u / c) / 1 u2 / c2
(2.9b)

K-vector components d and a (in  units) are Lorentz-Einstein (LE) matrix coefficients relating atom-

values (ck , ) or (x ,t ) to lab-values (ck, ) or (x,t) based on lab unit vectors Ĝ = 0
1( )  and P̂ = 1

0( )  in (2.2).

The new K-vectors define the new coordinate grid of white-line wave-zero paths in space-time of

Fig. 2.2c and, perhaps more importantly, the new (ck , ) coordinates in per-space time of Fig. 2.2b.

 ck
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3
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Fig. 2.2 Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.
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Einstein’s PW axiom “PW speed c is invariant,” might give the impression that pulses themselves are

invariant, but finite-  pulses in Fig. 2.2d clearly deform. Pulse speed is invariant but each CW square in

Fig. 2.3a deforms into a Minkowski-like rhombus in Fig. 2.3b simply due to Doppler detuning beats.

Lorentz-Einstein transformations

The Lorentz
vii

-Einstein
viii

 per-spacetime and spacetime transformations follow from K-vectors (2.9).

ck
=

1

1 u2 / c2

u / c

1 u2 / c2

u / c

1 u2 / c2

1

1 u2 / c2

ck
 (2.10a)

x

ct
=

1

1 u2 / c2

u / c

1 u2 / c2

u / c

1 u2 / c2

1

1 u2 / c2

x

ct
 (2.10b)

Wave K-vectors are bases for space-time and per-space-time. One symmetric LE matrix, invariant to axis-

switch ( ,ck)
 

(ck, ), applies to both. Conventional ordinate vs. ck-abscissa per-space-time and ct-

ordinate vs. x-abscissa space-time plots are used in Fig. 2.2 where 
 

=P=Kphase and 
 ck =G=Kgroup vectors

serve as x-space and ct-time bases, respectively, and then also serve as and-ck-bases.

The left and right pulse wave (PW) vectors L and R in per-space-time Fig. 2.2a also define left and

right PW paths in space-time Fig. 2.2d. This holds in either convention because L and R lie on 45°

reflection planes that are eigenvectors of an axis-switch ( ,ck)
 

(ck, ) with eigenvalues +1 and –1 while

half-sum-and-difference vectors P = (L + R) / 2 and G = (L R) / 2  simply switch (P
 

G).

Geometry of Lorentz-Einstein contraction-dilation

Fig. 2.3 compares wave path space-time coordinate lines for the laser lab in top figure (a) and for

the atom going right-to-left at speed u=3c/5 in bottom figure (b).

The fast wave-phase zeros define the space-x axis and gridlines in either view where they go at a

speed of 5c/3 in the atom view and at infinite speed  in the lab view.

The slow wave-group zeros define the time-ct axis and gridlines in either view where they go at a

speed of 3c/5 in the atom view and at zero speed 0 in the lab view.

The spatial separation of the slow wave-group zeros in Fig. 2.2c is 4/5 of the original 1/4μm shown

separating the stationary wave zeros in Fig. 2.1c or Fig. 1.5a. That is the Lorentz contraction factor

1 / d = 1 u2 / c2 .

The inverse time dilation factor d=5/4 is the vertical height of the new “pitcher’s mound” P in Fig.

2.2a that was originally of unit height in Fig. 2.1a. In space-time diamond of Fig. 1.5b the pitcher’s

mound is 5/6 fs from origin or “home plate” and that dilates by factor d=5/4 to 25/24 fs in Fig. 2.2c.

Detailed geometry of relativistic quantities is given in later figures. (Fig. 5.1, 5.4, and 5.5.)
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Fig. 2.3 Lasers make Cartesian (x,ct)-wave frame for themselves and Minkowski (x ,ct )-frame for atom.

Should relativity continue to be taught by imagining monstrous frames, mirrors, and smoke to

trace bouncing “photon bunches” using clanking clocks carefully synchronized by Swiss gnomes?

      Perhaps, that works as a humorous historical aside but current GPS systems and ultra high precision

pioneered by Evenson and coworkers begs our attention and critical thought. Now as his students are

achieving better than 16-figure time and frequency measurements, it is time for theoretical pedagogy to

sharpen Occam’s razor accordingly. And, if there is history to review, it is of Galileo and Euclid.



HarterSoft –LearnIt Physics by Geometry © 2008 W. G. Harter     Unit 3 - 25

Chapter 3. Invariance and Relative Phase: Galileo s revenge

Einstein relativity shows Galilean relativity, based on simple velocity sums and differences, to be

a 400 year-old approximation that fails utterly at high speeds. Einstein also dethrones infinite velocity that

is the one invariant velocity shared by Galilean observers regardless of their (finite) velocity. In its place

reigns a finite velocity limit c=299,792,458ms
-1 that is now the Einstein-Maxwell-Evenson invariant speed.

So it is remarkable that frequency sums and differences (1.10) simplify relativity by using

Galilean-like rules for angular velocities 
 A = A  of light phases A . Frequency sums or differences

A ± B  from interference terms like A B* = ABe i( A B )t
between wave pairs A = Ae i At

and

B = Be i Bt
 are relative frequencies (beat notes, overtones, etc.) subject only to simple addition and

subtraction rules that are like Galileo’s rules for linear velocity. Simple angular phase principles deeply

underlie modern physics, and so far there appears to be no c-like speed limit for an angular velocity .

Phase principles have electromagnetic origins. Writing oscillatory wave functions using real and

imaginary parts is common in studies of AC electrical phenomena or harmonic oscillators in general. Real

part q of oscillator amplitude q+ip= Ae i t  is its position q=Acos t. Imaginary part p=Asin t is oscillator

velocity v =-A  sin t in units of angular frequency . Positive  gives a clockwise rotation like that of

classical phase space or analog clocks, so a minus sign in a conventional Ae i t phasor serves to remind us

that wave frequency  defines our clocks and wavevector k= /c defines our meter sticks.

A plane wave of wavevector k in Fig. 3.1 is drawn as a phasor array, one A =|A|ei kx  for each

location x. A plane wave advances in time according to |A|ei(kx t )  at phase velocity V= /k. Similar

convention and notation are used for light waves and for quantum matter waves, but only light waves

have physical units, vector potential A and electric E-field, defining their real and imaginary parts. While

classical laser wave phase is observable, only relative phase of a quantum wave  appears to be so.

The concept of relative phase (and frequency) arises in classical or quantum interference where a

sum of two waves A = Aei A and B = Bei Bt
 may be represented at each position x by a vector sum of a

phasor-A with a phasor-B as in Fig. 3.1a. (Fig. 1.3 has a sum of 12 phasors at each x-point.)  The result is

a clockwise race around a track between the faster one, say A-phase A = kAx At  of angular speed - A,

and the slower B-phase B = kBx Bt  of angular speed - B as sketched in Fig. 3.1b.
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Galilean relativity of phase angular velocity holds if the phase wave is governed by linear

equations of motion such as Maxwell’s equations. Very precise measurements of en vacuo light have

verified this so far and Einstein relativity is a consequence. You might say this is Galieo’s revenge!

B moves relative to A

PLUS

β

α
cosα

sinα

cosβ

Red phasor B

EQUALS:

Green phasor A

(α+β)/2

(α−β)/2

(α−β)/2

(b) Typical Phasor Sum:
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A moves relative to B

(c) Phasor-relative views

(a) Sum of Wave Phasor Array

A

A B

B

ψA=eiα

ψB=eiβ

Sum: ΨA+B=ψA+ψB

Difference:ΨA−B=ψA−ψB

ΨA+B=ψA+ψB

(α−β)

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is inscribed in the (dashed)

circle of the phasor moving relative to the fixed one.

Geometry of relative phase

When A passes B the sum is a maximum or beat that then subsides to a minimum or node when A

is on the opposite side of the track from B. If amplitude magnitudes |A| and |B| are equal as they are in



HarterSoft –LearnIt © 2008 W. G. Harter Ch. 3 Invariance and Relative Phase   Unit 3 - 27

Fig. 3.1, then the wave node is a wave zero that defines one of the group G-lines in WZ coordinates of

Fig. 1.4 through Fig. 2.2. The relative angular velocity = A B  (beat angular frequency) is the angular

rate at which A passes B. A-B passings occur  times (per sec.) where  is  divided by track length 2 .

beat = / 2 = A B (3.1)

If one could ride in an angular Galilean frame of phasor-B, then A would be seen passing at

angular speed  with frequency . Suppose instead, one could ride at their average angular speed .

=
2
1 ( A + B ) (3.2)

Then Galilean arithmetic (which lasers given no reason to doubt in these matters) implies that phasor A or

B would each appear with a relative speed of plus-or-minus half their relative velocity.

±
2
1

= ±
2
1 ( A B ) (3.3)

A point of view relative to phasor B is shown by the first of Fig. 3.1c. A dashed circle represents

moving phasor A with A on one diagonal of an inscribed rectangle whose sides are the resultant sum

A + B  and difference A B . The other diagonal B appears fixed. A companion figure has A

appear fixed instead. Resultants in either figure begin and end on a dashed circle traced by the phasor that

is moving relative to the other. A rectangle-in-circle is a key Euclidian element of wave physics and is a

key feature of a later figure (Fig. 3.3) that shows the essence of wave geometry.

The half-sum and half-difference angles in Fig. 3.1b and frequencies (3.2) and (3.3) appear in the

interference formulas (1.10) that lead to relativistic Lorentz-Einstein coordinate relations (2.10) and their

WZ grid plots of Minkowski coordinates in Fig. 2.2c. One key is the arithimetic mean 
 
( + ) / 2  of phases

that gives the geometric mean 
  
(

A B
)1/ 2

= Ae
i( + ) / 2 of wave phasor amplitudes.  The other key is the

difference mean 
 
( ) / 2  and that is the phase angle of a cross mean

  
(

A B
*)1/ 2

= Ae
i( ) / 2 .

Euclidian means and rectangle-in-circle constructions underlie relativistic wave geometry as is

shown below.  This geometry also leads to the geometry of contact transformations in classical mechanics

that exposes relations between classical and quantum mechanics in Ch. 5.

Geometry of Doppler factors

Any number N of transmitter-receivers (“observers” or “atoms” previously introduced) may each

be assigned a positive number b11, b21, b31, …that is its Doppler shift of a standard frequency 1 broadcast

by atom-1 and then received as frequency m1= bm1 1 by an atom-m. By definition a transmitter’s own

shift is unity. (1= b11) Also, coefficient bm1 is independent of frequency since such geometric relations

work as well on 1THz or 1Hz waves as both waves march in lockstep to the receiver by Evenson’s CW
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axiom (1.1). The production times of a single wavelength of the 1Hz-wave and 10
12

 wavelengths of the

1THz wave must be the same (1sec.), and so must be reception time for the two waves since they arrive in

lock step, even if  is shortened geometrically by 1/ bm1. Doppler is a geometric and multiplicative effect.

300THz  400THz  600THz 900THz 1200THz
300THz 300/300 300/400 300/600  300/900  300/1200

  b11=1 b12=0.75 b13=0.5  b14=0.333   b15=0.25

400THz 400/300 400/400 400/600  400/900  400/1200
b21=1.333   b22=1 b23=0.667  b24=0.449   b25=0.333

600THz 600/300 600/400 600/600  600/900  600/1200
  b31=2 b32=1.5   b33=1  b34=0.667   b35=0.5

900THz 900/300 900/400 900/600  900/900  900/1200
  b41=3 b42=2.25  b43=1.5    b44=1   b45=0.75

1200THz  1200/300 1200/400 1200/600  1200/900 1200/1200
  b51=4 b52=3    b53=2  b54 =1.333    b55 =1

10
Doppler
red-shift
ratios:
rl,h = υlo/υhi

10 Doppler blue-shift ratios: b h,l = υhi/υlo

5 Doppler

fixed
receiver

blue shifted oncoming receiversred shifted departing receivers

,�+&0-,�+&0-

,�+&0-,�+&0-
,�+&0-

&-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-&&-0-�1-&&-0-�1-&

&-0-�1-&&-0-�1-& &-0-�1-&&-0-�1-&
&-0-�1-&&-0-�1-&

green
reference

source

Fig. 3.2 Doppler shift b-matrix for a linear array of variously moving receiver-sources.

If atoms travel at constant speeds on a straight superhighway, then bm1 in (2.8a) tells what is the

relative velocity um1 of the m
th

 atomic receiver relative to the number-1 transmitter.

um1 /c = (bm1
2 1) / (bm1

2
+1) (3.4)

The velocity um1 is positive if the m
th

 atom goes toward transmitter-1 and sees a blue (bm1>1) shift, but if

it moves away um1 is negative so it sees a red (bm1<1) shift. Transmitter-1 has no velocity relative to itself.

(u11=0) Infinite blue (or red) shift bm1=  (or bm1=0) gives um1=c (or um1=-c) and this defines the range of

parameters. The bm1 are constant until atom-m passes atom-1 so relative velocity flips sign (u1m u1m ).

Doppler shift then inverts ( b1m 1 / b1m ) as is consistent with axiom (1.2).

Suppose now b12, b22, b32, …are Doppler shifts of frequency 2 transmitted by the second atom

and received by the m
th

 atom as frequency m2= bm2 2. (Any atom (say the n
th

) may transmit, too.)

   mn= bmn n (3.5a)

Recipients don’t notice if atom-n just passes on whatever frequency nm came from atom-m. If frequency

n in (3.5a) is n1= bn1 1 that atom-n got from atom-1 then atom-m will not distinguish a direct m1 from

a perfect copy bmn bn1 1 made by atom-n from atom-1 and then passed on to atom-m.
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m1 = bm1 1= bmn bn1 1 (3.5b)

A multiplication rule results for Doppler factors and applies to light from atom-1 or any atom-p.

mp/ p= bmp = bmn bnp (3.5c)

An inverse relation results from atom-p comparing its own light to that copied by atom-n.

1= bpp = bpn bnp  or:  bpn =1/bnp (3.5d)

Notice that copying or passing light means just that and does not include reflection or changing +k

to –k or any other direction. This presents a problem for a receiver not in its transmitter’s (+k)-beam and

certainly for atom-p receiving its own beam. The relations (3.5) depend only on relative velocities and not

positions (apart from the problem that a receiver might be on the wrong side of a transmitter).

An obvious solution is to let the receiver overtake its transmitter or failing that delegate a slave

transmitter or receiver on its right side. Fig. 3.2 shows N=5 receivers of a 3=600THz source whose

various speeds produce a matrix of N(N-1)=20 Doppler shifted frequencies mn and factors bmn.

Doppler rapidity and Euclid means business

Composition rules (3.5c) suggest defining Doppler factors b=e  in terms of rapidity =ln b.

bmp = bmn bnp implies: mp = mn + np where: bab = e ab (3.6)

Rapidity parameters mn mimic Galilean addition rules as do phase angles  of wavefunctionss ei . Both 

and  are the parameters that underlie relativity and quantum theory. In fact, by (3.4) rapidity mn

approaches the relative velocity parameter umn /c between atom-m and atom-n for speeds much less than c.

Rapidity is also convenient for astronomically large Doppler ratios bab since then the numerical value of

ab =ln bab is much less than bab while umn /c approaches 1 in a way that is numerically inconvenient.

At intermediate relativistic speeds the geometric aspects of Doppler factors provide a simple and

revealing picture of the nature of wave-based mechanics. Pairs of counter moving continuous waves

(CW) have mean values between a K-vector R=K1=(ck1, 1) going left-to-right and an L=K3=(ck3, 3) going

right-to-left. A key quantity is the geometric mean  of left and right frequencies.

= 1 3 (3.7)

In Fig. 3.2a frequency 1=1 or 3=4 is a blue (b=e
+

=2) or red (r=e =1/2) shift of mean = 1 4 = 2 .

1 = b = e (3.8a) 3 = r = e (3.8b)

In units of 2  ·300THz, frequency values 3=1 and 1=4 were used in Fig. 2.2. Their half-sum 5/2 is their

arithmetic mean. That is the radius of the circle in Fig. 3.2b located a half-difference (3/2) from origin.

1 + 3

2
=

e+ + e

2
= cosh =

5

2
  (3.9a) 1 3

2
=

e+ e

2
= sinh =

3

2
  (3.9b)
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By (2.8) the difference-to-sum ratio is the group or mean frame velocity-to-c ratio u/c=3/5 for b=2.

1 3

1 + 3

=
sinh

cosh
= tanh =

u

c
(3.9c)

4 1

4 +1
=

u

c
=

3

5
 (3.9d)

 −

ck

 ω

Arithmetric
 mean:

[1 4]1/2  = ϖ = 2 [4 − 1]/2=3/2 [4 + 1]/2=5/2

3/2

3/2

(HALF-DIFFERENCE) (HALF-SUM)(ROOT-PRODUCT)

Geometric
  mean:

Difference
  mean:

ω3=1 ω1=4

(a)

 −

 −

4

4
  ρ 

ρ
= 5/2)

= ρ

= ρ
red shift

u

c

= ρ
blue shift

Geometric
mean
or
Base:
ϖ=B=2

(b)

=

=

ρ
= 3/2)

(HALF-DIFFERENCE)

(HALF-SUM)

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 3.3b Geometry for the CW wave coordinate axes in Fig. 2.2.
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The geometric mean ( = 1 4 = 2 ) in units of 2  ·300THz is the initial 600THz green laser lab

frequency used in Fig. 2.1. Diamond grid sections from Fig. 2.2b are redrawn in Fig. 3.3b to connect with

the geometry of the Euclidian rectangle-in-circle elements of interfering-phasor addition in Fig. 3.1c.

Various observers see the single continuous wave frequencies 1 or 3 shifted to 1=e
+

1 and

3=e 3, that is, to values between zero and infinity. But, because factor e  cancels e+ , all will agree on

the 2-CW mean value  =[ 1 3]
1/2

=[ 1 3]
1/2

. A 2-CW function has an invariant  of its rest frame

(Recall Fig. 2.2c) seen at velocity u=c( 1- 3)/( 1+ 3). A single CW has no rest frame or frequency since

all observers see it going c as in Fig. 1.1. To make a home frame, a single CW must marry another one!

Invariance of proper time (age) and frequency (rate of aging)

Space, time, and frequency may seem to have an out-of-control fluidity in a wavy world of

relativism, so it is all the more important to focus on relativistic invariants. Such quantities make ethereal

light billions of times more precise than any rusty old meter bar or clanking cuckoo clock.

It is because of the time-reversal (1.2) and Evenson axiom (1.1) that product 1 3=
2
 is invariant

to inverse blue-and-red Doppler shifts b=e
+  and r=e . It means the blue-red shifted diamond in Fig. 3.3b

or Fig. 2.2 has the same area R xL  as the original green “home field” baseball diamond area RxL drawn

below it and in Fig. 2.1. Constant products 1 3=const. give families of hyperbolas.

|RxL|=2|GxP|=2|KgroupxKphase|=2|
2
cosh

2
  -

2
sinh

2
|=2

2

One hyperbola in Fig. 3.4a intersects bottom point B=  (“pitchers’mound”). The other hits 2B (2nd
 base).

Each horizontal P -hyperbola is defined by the phase vector P=Kphase or some multiple of P.

K phase =
2

e e

e + e
=

sinh

cosh
=

ckp

p

     on P-hyperbola:    p( )
2

ckp( )
2
=

2 (3.10a)

Each vertical G -hyperbola is defined by the wave group vector G=Kgroup or some multiple of G.

Kgroup =
2

e + e

e e
=

cosh

sinh
=

ckg

g

     on G-hyperbola:    ckg( )
2

g( )
2
=

2 (3.10b)

The G-vectors serve as tangents to P-hyperbolas and vice-versa. The tangent slope dk
d to any (k)

curve is a well known definition of group velocity. Fig. 3.4b shows how dk
d of a P-hyperbola is equal to

secant slope k in Fig. 3.4a as defined in the u=Vgroup equation (2.7b) based on CW axioms.

Phase velocity k =Vphase and its P-vector is an axis-switch ( ,ck)
 

(ck, ) of k and its G-vector. In

conventional c-units Vgroup/c<1 and 1<Vphase/c are inverses according to (2.7). (Vphase·Vgroup=c
2)
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hyperbolas

P hyperbolas
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Fig. 3.4 (a) Horizontal G-hyperbolas for proper frequency B=  and 2B and vertical P-hyperbolas for proper wavevector k. (b)

Tangents for G-curves are loci for P-curves, and vice-versa.

Features on per-space-time (ck, ) plots of Fig. 3.3-Fig. 3.4 reappear on space-time (x,ct) plots as

noted in Fig. 2.1 and Fig. 2.2. A space-time invariant analogous to (3.10) is called proper-time .

ct( )
2

x( )
2
= c( )

2
= ct( )

2
x( )

2
(3.11)
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It conventional to locates oneself at (0,ct) or presume one’s origin x=0 is located on oneself. Then

(3.11) reduces to time axis ct=c . A colloquial definition of proper time is age, a digital readout of one’s

computer clock that all observers may note. By analogy,  is proper-frequency, a rate of aging or a digital

readout on each of the spectrometers in Fig. 3.2. Each reading is available to all observers.

( )
2

ck( )
2
= ( )

2
= ( )

2
ck( )

2
(3.12)

The same hyperbolas (3.12) mark off the laser lab ( ,ck), the atom frame ( ,ck ), or any other frame.

The proper frequency of a wave is that frequency observed after one Doppler shifts the wave’s

kinks away, that is, the special frequency  seen in the frame in which its wavevector is zero (ck=0) in

(3.12). Hence a single CW has a proper frequency that is identically zero (  =0) by Evenson’s axiom

( =ck), so single CW light cannot age. If we could go c to catch up to light’s home frame then its phasor

clocks would appear to stop. Someone moving along a line of phasor clocks in Fig. 1.1c would always see

the same reading, but that would be an infinite Doppler shift that one can only approach.

To produce a nonzero proper frequency  0 requires interference of at least two CW entities

moving in different directions and this produces a standing wave frame like Fig. 2.1c moving at a speed

less than c as shown in Fig. 2.2c. Matched CW-pairs of L and R baselines frame a “baseball diamond” for

which the phase wavevector kp in (2.2a) is zero. Then frame velocity u=Vgroup in (2.3b) is zero, too.

Fig. 3.5 shows the plots of per-spacetime “baseball diamond” coordinates for comparison of lab

and atom frame views. While Fig. 3.5a is a “blimp’s-eye view” of the lab-frame diamond in Fig. 2.1, the

atom frame view in Fig. 3.5b looks like the baseball field seen by a spectator sitting in the stands above

the dugout. Nevertheless, identical hyperbolas are used to mark grids in either view.

Each point on the lower hyperbola is a bottom point =B=2 (600THZ) for the frame whose

relative velocity u  makes it a -axis (k =0)-point, and every (k =0)-point on the upper hyperbola is its

bottom point =2B=4 (1200THZ), and so on for hyperbolas of any given proper frequency value .  The

same applies to space-time plots for which time ct  takes the place of per-time  and space x  takes the

place of per-space ck . Then bottom points are called proper time or -values from (3.11).

For single CW light the proper time must be constant since a single CW cannot age. It is a

convention to make the baselines or light cone intersect at the origin in both time and space. This sets the

baseline proper time constant  to zero. Then invariants (3.11) reduce to baseline equations x=±ct or

x =±ct  for all frames. The space-time light cone relations are in direct correspondence with the per-space-

time light cone relations =±ck or =±ck  for zero proper frequency in all frames and are concise

restatements of the Evenson CW axiom (1.1).
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Fig. 3.5 Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.
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Chapter 4. Mechanics based on CW axioms

Each of the 2-CW structures or properties discussed so far are due to relative interference effects

between pairs of 1-CW entities that, by themselves, lack key 2-CW properties such as a proper invariant

frequency , a rest frame, or any speed below the mortally unattainable velocity of c. To acquire “mortal”

properties requires an interference encounter or pairing of 1-CW with another.

Now we see how 2-CW interference endows other “mortal” properties such as classical mass and

relativistic mechanics of energy-momentum that characterize a quantum matter wave. Such endowment

lies in P-hyperbola phase relations (3.10a) that in turn are due to CW axioms (1.1) and (1.2).

 

p = B cosh

 B +2
1 B 2  (for u c)

(4.1a)

 

ckp = Bsinh

      B  (for u c)
(4.1b)   

 

u

c
= tanh

      (for u c)

(4.1c)

Hyperbola in Fig. 3.4 has bottom B=  and P-vector components ( p,ckp) with tangent slope u/c at P. At

low group velocity (u c) the rapidity  approaches u/c. Then p and kp are simple functions of u.

 
p B +2

1[B/c2]u2  (4.2a)   
 
kp [B/c2]u     (4.2b)

The p and kp fit Newtonian-energy E and Galilean-momentum p. Is that a coincidence? Perhaps, not!

E = const.+2
1 Mu2  (4.3a)   p Mu     (4.3b)

Wave  and k results (4.2), scaled by a single factor s=Mc
2
/B, match classical E and p definitions (4.3).

    
 
E = s p sB +2

1 [sB/c2]u2 (4.4a)    
 
p = skp [sB/c2]u     (4.4b)

In Newton’s mechanics, only energy difference E counts, so an E=const. term (4.3a) seems moot.

But, in (4.4a) that const.=sB is the proper carrier-frequency value B=  at the hyperbola bottom B in Fig.

3.4b. That is scaled by s=Mc
2
/B to sB=s  in Fig. 4.1. This derives the famous Einstein rest energy.

const.= sB = Mc
2
 = s  (4.4c)

-mass-energy equivalence is a huge idea due to Einstein (1905) and Planck (1900). k-vector-

momentum equivalence by DeBroglie came later (1920). CW results (4.1) give both directly and exactly.

   E = s p = Mc2 cosh =
Mc2

1 u2 / c2
(4.5a)      p = skp = Mcsinh =

Mu

1 u2 / c2
(4.5b)

Scale factor s in Planck
ix
 E=s  or DeBroglie

x
 p=sk laws is found experimentally. The lowest

observed s-value is Planck angular constant =1.05·10
-34

J·s. That is Planck’s axiom E= N=hN  for N=1.

Integer N is Planck’s optical quantum number later called photon-number. At first, Planck regretted his

1900 axiom E=hN . It seems inconsistent with   2-dependence of classical oscillator energy E=A
2 2. In

1905, Einstein resolved this. A key idea is quantized amplitude AN= (hN/ ). (Even amplitude is wavy!)
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 (a) Einstein-Planck Dispersion

 (b) Bohr-Schrodinger Dispersion

E'=hω'

matter wave:
positive μ
E2 - c2p2 =(Mc2)2

photon:
zero Μ
E =  c p

E  =  p2/2M

E  = (h km )2

tachyon:
imaginary Μ

Atom    frame
Laser frame

2M

Fig. 4.1 Energy vs. momentum dispersion functions including mass M, photon, and tachyon.

(a) Relativistic (Einstein-Planck-deBroglie) case: (Mc
2)2

=E
2
-(cp)

2
 = 1 or  μ2

=
2
-(ck)

2
 = 1/

2
.

(b) Non-relativistic (Bohr-Schrodinger-deBroglie) case:  =-(1/2M)p
2
  or 

 
= k

2
/2M

Quantized cavity modes and “fuzzy” hyperbolas

Cavity boundary conditions “1
st
-quantize” classical wave mode variables ( n,kn) so as to have discrete

numbers n=1,2,3,… of half-wave anti-nodes that fit in a cavity of length-  as shown at the top of Fig. 4.2.

kn= / n= n· /  (4.6a) n=c kn = c n· / (4.6b)

Planck’s axiom “2
nd

-quantizes” each fundamental mode frequency n to have discrete quantum numbers

Nn=0,1,2,3,… of photons. Each level EN(n)= Nn n labels a hyperbola in Fig. 4.2 whose number n of anti-

nodes and N of photons is invariant. This lends object-permanence to cavity “light particles” or photons.
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As discussed in Ch. 6, laser waves are coherent state combinations of N-photon states that have

semi-classical properties that include well-defined wave phase. One “fuzzy” hyperbola of uncertain N and

mass-energy replaces the ladders in Fig. 4.2. This is a kind of 2
nd

 Occam-razor cut after the 1
st
 cut of PW

into CW. As discussed in Ch. 6, it resolves CW into coherent combinations of “2
nd

-quantized” photons.

-1-2-3-4

 Boosted cavity wave
has invariant

mode number n
photon number Nn

+1 +2 +3 +4

ct

x

Lorentz
contracted

cavity length
L=3.2

Proper length
l=4.0

Fig. 4.2 Optical cavity energy hyperbolas for mode number n=1-3 and photon number N=0, 1, 2,....

Alternative definitions of wave mass

If mass or rest energy is due to proper phase frequency , then a quantum matter wave has mass

without invoking hidden Newtonian “stuff.” With Occam logical economy, 2-CW light led to exact mass-

energy-momentum ( ,k) relations (4.5) and not just low-speed classical ones (4.3). Now we see how 2-

CW results expose some salient definitions of mass or matter that a classical theory might overlook.



HarterSoft –LearnIt © 2008 W. G. Harter                    Unit 3. Relativity and Quantum Theory    Unit 3  38

First, the Einstein-Planck wave frequency-energy-mass equivalence relation (4.4c) ascribes rest

mass Mrest to a scaled proper carrier frequency s  /c2. The scale factor s is Planck’s s= N for N quanta.

 
Mrest = E / c2

= N / c2 (4.7)

For rest electron mass me =9.1·10
-31

kg or Mp =1.67·10
-27

kg of a proton, the proper frequency times N=2 is

called zwitterbevegun (“trembling motion”) and is as mysterious as it is huge. (Electron rest frequency e

= me c
2
/  =7.76·10

+20
(rad)s

-1 is the Dirac (e+
e )-pair production

xi
 threshold as discussed in Ch. 8.)

Second, we define momentum-mass Mmom by ratio p/u of momentum (4.5b) to velocity u. (Galileo’s

p=Mmomu) Now Mmom varies as cosh e / 2  at high rapidity  but approaches invariant Mrest as 0 .

 

p

u
Mmom =

Mrestc

u
sinh = Mrest cosh

u c
Mreste / 2

                   = Mrest 1 u2 / c2
u c

Mrest

(4.8)

Frame velocity u is wave group velocity and the Euclid mean construction of Fig. 3.3a shows u is the

slope of the tangent to dispersion function (k). A derivative of energy (4.5a) verifies this once again.

Vgroup =
d

dk
=

dE

dp
=

c2 p

E
= u (4.9)

Third, we define effective-mass Meff as ratio
 
p / u =F/a=dp/du of momentum-change to acceleration.

(Newton’s F=Meffa) Meff varies as cosh3 e3 / 2  at high rapidity  but also approaches Mrest as 0 .

 

F

a
Meff

dp

du
=

dk

dVgroup

=
d

dk

d

dk
=

d 2

dk 2

                = Mrest 1 u2 / c2( )
3/2

u c
Mrest

(4.10)

Effective mass is  divided by the curvature of dispersion function (k), a general quantum wave

mechanical result. Geometry of a dispersion hyperbola =Bcosh  is such that its bottom (u=0) radius of

curvature (RoC) is the rest frequency B=Mrestc
2
/ , and this grows exponentially toward  as velocity u

approaches c. The 1-CW dispersion ( =±ck) is flat so its RoC is infinite everywhere and so is photon

effective mass Meff( )= . This is consistent with the (All colors go c)-axiom (1.1). The other extreme is

photon rest mass Mrest( )=0. Between these extremes, photon momentum-mass depends on CW color .

Mrest( )=0 (4.11a) Mmom( )=p/c= k/c= /c
2
   (4.11b) Meff( )= (4.11c)

For Newton this would confirm light’s “fits” to be crazy to the point of unbounded schizophrenia. 

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass M  to it.

M = /c
2
=   (1.2·10

-51
)kg·s=  4.5·10

-36
kg   (for:  = 2 ·600THz )

 In contrast, a 1-CW state has no rest mass, but 1-photon momentum (4.5b) is a non-zero value p =M  c.

p = k= /c=   (4.5·10
-43

)kg·m=1.7·10
-27

kg·m·s
-1

(for:  = 2 ·600THz )

This p=Mc resembles Galilean relation p=Mu in (4.3b) and is perhaps another case of Galileo’s revenge!
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Absolute vs. relative phases: Method in madness

Probably Newton would find a CW theory to be quite mad. Claiming that heavy hard matter owes

its properties to rapid hidden “carrier” phase oscillations would not elicit a Newtonian invitation to the

Royal Society but rather to a lunatic asylum. Even though CW results (4.2) give Newtonian axioms (4.3)

at low speeds, the result would seem to fail at high speeds where exact results (4.5) sag below Newton’s.

Also, having an enormous constant Mc
2 be part of energy would, in 1670, seem insanely meaningless.

But, in 1905
xii

 Einstein relations appear with both Mc
2 and energy sag. Now Einstein’s classical

training left him leery of hidden quantum wave phases with dicey interpretations of intensity  as

probability. Also, he may have asked why observable results depend on a square =| |
2 that kills that

overall phase frequency, seemingly losing the one quantity that represents (or is) the total mass-energy.

Square | |
2 of a 2-CW =e

ia
+e

ib loses phase factor ei(a+b)/2 leaving group functions cos2 (
  2
a b )  of

differences 1 3 or k1 k3  of 1
st
 or 3

rd
 base frequencies or k-vectors. Group beat frequency = 1 3

is zero in the rest frame of Fig. 2.1c where it is a stationary wave. In Fig. 2.2c or any other frame, | |
2 is

not stationary but is observed to have velocity Vgroup 0. Fourier sums of m=3 or more terms

= a1e
i(k1x 1t )

+ a2ei(k2x 2t )
+ a3e

i(k3x 3t )
+ ...  may have multiple beats in *  as in Fig. 2.2d.

P =| |2= * = ai * aje
i( kij x ij t)

(4.12)

With m(m 1) / 2  observable difference ij = 1 j  or beat notes, P cannot rest in any frame.

Differences or derivatives are observable while absolute -frequency stays hidden until two quantum

objects interfere. Then new beats arise from differences between the two absolute frequencies and others.

A new absolute phase (not in | |
2) is the sum of all. But, we can only observe beats of relative frequency!

That may be a quantum version of Einstein’s popularized saw, “It’s all relative.” Phase velocity escapes

with its Galilean arithmetic intact in Fig. 3.1, but here it finally surrenders its absolutes to relativism.

Total phase gives total energy E or momentum p, but differentials are what one feels through work

E or impulse p. Invariant quantities like  and Mrest depend on total phase but intensity (4.12) has only

differentials kij or relative beats ij. Among frame-dependent relative quantities are group velocity u

(4.9), Mmom (4.8), and Meff (4.10), but rest mass Mrest (4.4c) is a frame-invariant absolute quantity. Also note

that Mmom and Meff approach Mrest at zero velocity. Now | |
2 may register an  beat with a DC (static 0=0)

wave, but lack of resonance confines ( 0=0)-carrier waves to beat only locally.

Phase frequency p in a quantum wave eip cos g = e
i(kp x pt)

cos(k
g
x

g
t)  is fast and silent like a

carrier frequency of radio wave. Group frequency g is like the audible signal, much slower and heard in

resonant beats a b involving carrier and receiver. Atomic “carrier” frequencies p=Mpc
2
/  due to rest

mass are enormous as are those of atomic measuring devices that play the role of “receivers” in quantum

experiments. Measurement involves resonant contact of an atom and devices that horse-trade beats at

truly huge frequencies.

One way to avoid huge Mc
2
/ -related phase frequencies is to ignore them and approximate the

relativistic equation E=Mc
2
cosh  of (4.5a) by the Newtonian approximation (4.4a) that deletes the big rest-
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energy constant sB=Mc
2. The exact energy (4.5a) that obeys CW axioms (1.1) is rewritten in terms of

momentum (4.5b) below to give a Bohr-Schrodinger (BS) approximation (4.14) with Mc
2 deleted.

E =
Mc2

1 u2 / c2
= Mc2 cosh = Mc2 1+ sinh2

= Mc2( )
2
+ cp( )

2
(4.13)

E = Mc2( )
2
+ cp( )

2
1/2

Mc2
+

1

2M
p2

BS approx

1

2M
p2 (4.14)

If only frequency difference affect observation based on | |
2 (4.12), the BS claim is that energy origin

may be shifted from (E=Mc
2
, cp=0) to (E=0, cp=0). (Frequency is relative!) Hyperbola (4.13) in Fig. 4.1a,

for u way less then c, approaches the BS parabola (4.14) in Fig. 4.1b. That is the only E(p) Newton knew.

Group velocity u=Vgroup =dk
d  of (4.9) is a relative or differential quantity so origin shifting does not

affect it. However, phase velocity k =Vphase is greatly reduced by deleting Mc
2 from E= . It slows from

Vphase=c
2
/u that is always faster than light to a sedate sub-luminal speed of Vgroup/2. Having Vphase go slower

than Vgroup is an unusual situation but one that has achieved tacit approval for BS matter waves.
xiii

 The

example used in Fig. 6.7 of Unit 2 is a 2-CW BS matter wave exhibiting this low Vphase.

Standard Schrodinger quantum mechanics, so named in spite of Schrodinger‘s protests
xiv

, uses

Newtonian kinetic energy (4.14) or (4.3) with potential  (as the const.-term) to give a BS Hamiltonian.

H=p
2
/2M +  or: = 

2
k

2
/2M + k (4.15)

The CW approach to relativity and quantum exposes some problems with such approximations.

First, a non-constant potential  must have a vector potential A so that ( ,cA) transform like ( ,ck)

in (2.10a) or (ct,x) in (2.10b) or as (E,cp) with scaling laws p= k and E= . Transformation demands

equal powers for frequency (energy) and wavevector (momentum) such as the following.

(E- )
2
=(p-cA)

2
/2M+Mc

2
 or: ( - k)

2
= ( k-cA)

2
/2M+Mc

2
 (4.16)

Also, varying potentials perturb the vacuum so single-CW’s may no longer obey axioms (1.1-2).

Diracs’s elegant solution obtains ±pairs of hyperbolas (4.13) or (4.16) from avoided-crossing

eigenvalues of 4x4 Hamiltonian matrix equations with negative frequency hyperbolas. The negative-

hyperbolas in Fig. 4.1 are (conveniently) hidden by the BS approximate dispersion parabola.

Dirac’s ideas require three-dimensional wavevectors and momenta. But first, fundamental

Lagrangian-Hamiltonian geometric relations of quantum phase and frequency relate relativistic classical

and quantum mechanics in the following Ch. 5. These relations expose more of the logic of phase-based

Evenson axiom (1.1), Doppler T-symmetry axiom (1.2), and Euclid frequency means in Fig. 3.3.
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Chapter 5. Classical vs. quantum mechanics

The CW-spectral view of relativity and quantum theory demonstrates that wave phase and in

particular, optical phase, is an essential part of quantum theory. If so, classical derivation of quantum

mechanics might seem about as viable as Aristotelian derivation of Newtonian mechanics.

However, the 19
th

 century mechanics of Hamilton, Jacobi, and Poincare developed the concept of

action S defined variously by area 
 

pdq in phase-space or a Lagrangian time integral Ldt . The latter

action definition begins with the Legendre transformation of Lagrangian L and Hamiltonian H functions.

  L = p x H (5.1a)

L is an explicit function of x and velocity   u = x  while the H is explicit only in x and momentum p.

0 =
L

p
   (5.1b)

 

p =
L

x
   (5.1c)

 

 0 =
H

x
   (5.1d)

 

x =
H

p
   (5.1e)

Multiplying by dt gives the differential Poincare invariant dS and its action integral S = Ldt .

 dS = L dt = p dx H dt (5.2a)  S = L dt = p dx H dt (5.2b)

Planck-DeBroglie scaling laws p= k and E=  (4.5) identify action S as scaled quantum phase .

  
d = L dt = k dx dt (5.3a)        

 
= k dx dt (5.3b)

If action dS or phase d  is integrable, then Hamilton-Jacobi equations or (k, ) equivalents hold.

   
S

x
= p    (5.4a)

S

t
= H    (5.4b)

x
= k    (5.4c)

t
=    (5.4d)

Phase-based relations (5.4c-d) define angular frequency  and wave number k. The definition (3.8) of

wave group velocity is a wave version of Hamilton’s velocity equation (5.1e).

 

x =
H

p
   equivalent to: u = V

group
=

k

The coordinate Hamilton derivative equation relates to wave diffraction by dispersion anisotropy.

 

p =
H

x
 equivalent to:     

 

k =
x

Classical HJ-action theory was intended to analyze families of trajectories (PW or particle paths),

but Dirac and Feynman showed its relevance to matter-wave mechanics (CW phase paths) by proposing

an approximate semi-clasical wavefunction based on the Lagrangian action as phase.

  ei
= eiS /

= ei L dt / (5.5)

The approximation symbol ( ) indicates that only phase but not amplitude is assumed to vary here. An x-

derivative (5.4a) of semi-classical wave (5.5) has the p-operator form in standard BS quantum theory.

 x

i S

x
eiS /

=
i

p    (5.6a)
 i x

= p (5.6b)



HarterSoft –LearnIt © 2008 W. G. Harter                    Unit 3. Relativity and Quantum Theory    Unit 3  42

The time derivative is similarly related to the Hamiltonian operator. The HJ-equation (5.4b) makes this

appear to be a BS Hamiltonian time equation.

 t

i S

t
eiS /

=
i

H (5.7a)
 

i
t

= H (5.7b)

However, these approximations like the BS approximations of (4.14) ignore relativity and lack economy

of logic shed by light waves. The Poincare phase invariant of a matter-wave needs re-examination.

Contact transformation geometry of a relativistic Lagrangian

A matter-wave has a rest frame where x =0=k  and its phase  = kx-  t reduces to μ , a product of

its proper frequency μ = N (or Mc
2
/ ) with proper time t = . Invariant differential d  is reduced, as well,

using the Einstein-Planck rest-mass energy-frequency equivalence relation (4.4c) to rewrite it.

 d  = kdx  dt= μ  d  = -(Mc
2
/ ) d . (5.8) 

-Invariance (2.21) or time dilation in (2.10b) gives proper d  in terms of velocity u =
dx

dt
 and lab dt.

 d  = dt (1-u
2
/c

2
) )=dt sech (5.9)

Combining definitions for action dS=Ldt (5.2) and phase dS = d   (5.3) gives the Lagrangian L.

  L = μ   = -Mc
2

(1-u
2
/c

2
)= -Mc

2
sech  (5.10)

Fig. 5.1 plots this free-matter Lagranian L next to its Hamiltonian H using units for which c=1=M.

(a) Hamiltonian

Momentum p

P

P′

P′′

-L
-L′

-L′′

L(q,q)
Velocity u=q

Q
Q′

Q′′

-H

-H′

-H′′

H
 H′

 H′′
L

L′
L′′

H

 H′

 H′′

slope:

slope:
∂H
∂p

= q
= u

∂L
∂q

= p

(b) LagrangianH(q,p)

radius = Mc2

O

O

Fig. 5.1. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian

Relativistic matter Lagrangian (5.10) is a circle (Fig. 5.1b). L-values L, L ,  and L in Fig. 5.1 are

contact Legendre transforms of H-values H , H ,  and H of Hamiltonian hyperbola in Fig. 5.1a. Abscissa p

and ordinate H of a point P in plot (a) gives negative intercept -H and slope p of tangent HQ contacting the

transform point Q in plot (b) and vice-versa. (Contact geometry is really wave-action-energy mechanics.)

If p = Mu , Lagrange kinetic energy L =
2
1 Mu2  is Hamilton H = p2 / 2M . Then circle L and hyperbola

H both approximate a Newtonian parabola at low speed u<<c. But, as
 
u c the L-circle rises above the

parabola and the H-hyperbola sags below it and instead approaches contacting c-asymptote in Fig. 5.1.
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Action integral S= Ldt is to be minimized. Feynman’s interpretation of S minimization is depicted

in Fig. 5.2. A mass flies so that its “clock”  is maximized. (Proper frequency
 
μ = Mc2 /  is constant for

fixed rest mass, and so minimizing μ  means maximizing + .) An interference of Huygen wavelets

favors stationary and extreme phase. This favors the fastest possible clock as is sketched in Fig. 5.3.

Feynman described families of classical paths or rays fanning out from each space-time point on a

wavefront of constant phase  or action S. Then, according to an application of Huygen's principle to

matter wave, new wavefronts are continuously built in Fig. 5.3 through interference from “the best” of all

the wavelets emanating from a multitude of source points on each preceding wavefront. Thus classical

momentum p= S by (5.4a) for the “best” ray ends up normal to each wavefront.

The “best” are so-called stationary-phase rays that are extremes in phase and thereby satisfy

Hamilton's Least-Action Principle requiring that Ldt is minimum for “true” classical trajectories. This in

turn enforces Poincare' invariance by eliminating, by de-phasing, any “false” or non-classical paths

because they do not have an invariant (and thereby stationary) phase. “Bad rays” cancel each other in a

cacophonous mish-mash of mismatched phases. Each Huygen wavelet is tangent to the next wavefront

being produced. That contact point is precisely on the ray or true classical trajectory path of minimum

action and on the resulting “best” wavefront. Time evolution from any wavefront to another is thus a

contact transformation between the two wavefronts described by the geometry of Huygens Principle.

Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house winner in

a kind of wave dynamical lottery on an underlying wave fabric. Einstein’s God may not play dice, but

some persistently wavelike entities seem to be gaming at enormous Mc
2
/ -rates down in the cellar!

It is ironic that Evenson and other metrologists have made the greatest advances of precision in

human history, not with metal bars or ironclad classical mechanics, but by using the most ethereal and

dicey stuff in the universe, light waves. This motivates a view of classical matter or particle mechanics

that is more simply and elegantly done by its relation to light and its built-in relativity, resonance, and

quantization that occurs when waves are subject to boundary conditions or otherwise confined. While

Newton was complaining about the seeming “fits” of light, it was just trying to tell him something.

Derivation of quantum phenomena using a classical particle paradigm appears a doomed effort. If

particles are made by waves, optical or otherwise, rather than vice versa as Newton believed, the case is

closed. Also, CW trumps PW as CW symmetry axioms (1.1-2) derive classical results (4.4) while giving

exact relations (4.5) for relativity and quantum theory tossed into the bargain. Such Occam economy is

found lacking on a PW path from Newton to Einstein and Planck.

Thus basic CW sum-and-difference phase relations seem to underlie the physics of Poincare

contact geometry. This in turn is based on circular and hyperbolic geometry described next.
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Clock on natural

runs the fastest

Clocks on

are neither
slowest nor
fastest

Clock on
 light-cone  path
is stopped

Space x

Time ct

...is stopped

...neither
slowest nor
fastest

Fig. 5.2 “True” paths carry extreme phase and fastest clocks. Light-cone has only stopped clocks.

Mostly destructive
interference

Stationary phase

by constructive
interference

Fig. 5.3 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.
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Geometry of circular and hyperbolic functions

Geometry of half-sum and half-difference phase P=(R+L)/2 and group G=(R-L)/2 vectors is based

on trigonometric exponential identities that are crown jewels of 18
th

 century mathematics and have

Euclidian geometric origins shown in Fig. 5.4. Phase angle-  identities apply to Fig. 5.4a.

e+i
= cos + i sin

e i
= cos i sin

(5.11a)
cos = (e+i

+ e i ) / 2

i sin = (e+i e i ) / 2
(5.11b)

Circular function tan  is named for a tangent to a unit circle shown in Fig. 5.4(a). Its incline (sine)

elevation is sin . The complimentary tangent or cotangent cot  completes the tangent distance between

axes where  is circle arc-length-  or subtended area- . Hyperbolic functions use area  for “angle.”

e+ = cosh + sinh

e = cosh sinh
(5.12c)

cosh = (e+ + e ) / 2

sinh = (e+ e ) / 2
(5.12d)

Fig. 5.4b shows how hyperbolic functions relate to circular ones in Fig. 5.4a. The circular sine equals the

hyperbolic tangent (sin  =tanh ) and vice versa (tan  =sinh ). Each circular function has a segment that

matches one for a hyperbolic function, for example (cos  =sech ) matches (sec  =cosh ). These relations

recap the CW view of the Legendre contact transformation in Fig. 5.1 that underlies classical and

quantum theory that is in the algebra and geometry for every bit of light-and-matter in and around us!

In Fig. 5.4, circular area  and hyperbolic area  have been chosen so that tan  =1.15=sinh  and

sin  =0.75=tanh , that is for u=3c/4. The tangent to the circle in Fig. 5.4a-b is like the one that contacts the

Lagrangian circle in Fig. 5.1b to contact-transform it to the Hamiltonian hyperbola in Fig. 5.1a, and vice

versa the hyperbolic tangent in Fig. 5.4b is like the one that transforms the Hamiltonian hyperbola in Fig.

5.1a to the Lagrangian circle in Fig. 5.1b.

The hyperbolic tangent u/c=tanh  of (2.19) corresponds to frame rapidity  and group velocity

u=Vgroup =dk
d  in (2.8), (4.9) and in Fig. 3.3a-b. The circular tangent angle  or inclination sin  belongs to

Lagrangian velocity function (5.10) in Fig. 5.1b. (The horizontal axis of the latter in the vertical axis of

Fig.11. This geometry is symmetric to axis-switching.) As u and  approach c and , respectively, the

circular angle  approaches /2.

This angle  is the stellar velocity aberration angle, that is, the polar angle that vertical starlight is

seen by a horizontally moving astronomer to tip into her direction of motion. Aberration angle , like

rapidity , is 1
st
-order in velocity u and both  and  equal u/c at low speeds. (See the discussion of Fig.

5.6 near the end of this chapter. This deepens the development to include 4-vector space-time.)

Many of the twelve circular-hyperbolic trigonometric ratios in Fig. 5.1 belong to one or more

physical or geometric effects shown in prior diagrams beginning with Euclid’s rectangle-in-circle mean

construction of Fig. 3.3. Prior ratio constructions are overlapped in the form of Fig. 5.1 and results in Fig.

5.5a that might be described as a global ratio riot. This riot is simplified and labeled in zoom-in views of

Fig. 5.5b-d and they are the basis of the following discussion of the role of tangent-contact geometry in

CW analysis of Poincare contact transformation and relativistic quantum waves.
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ct  (time)

x(space)

 1.0

-1.0

 1.0

ρ
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coshρ

sinhρ

cothρ

cschρ

cschρ
e+ρ

sechρ

tanhρ

tanhρ

sinhρ

coshρ

Hyperbolic arc area
ρ =1.0434=rapidity
sinh ρ =1.2433
cosh ρ =1.5955
tanh ρ =0.7792
csch ρ =0.8043
sech ρ =0.6267
coth ρ =1.2833

x

y

 1.0

 1.0
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Circlular arc area(a) Circlular Functions
         (plane geometry)

(b) Hyperbolic Functions
   (spacetime geometry)

e-ρ

e-ρ

e-ρ

e-ρ

e-ρ

Fig. 5.4 Trigonometric geometry (a) Unit circular area =0.86 and (b) Unit hyperbolic area =0.99.
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Hyper-circular contacts

Beginning with the Euclidian mean diagram of Fig. 3.3, three mean frequencies arise from an

interfering pair of left-moving “red” and right-moving “blue” beams of frequency L and R. First is a

half-sum phase frequency p=( R+ L)/2 (arithmetic mean) that defines the circle radius in Fig. 3.3.

Second is a half-difference group beat frequency g=( R- L)/2 (difference mean) that is radial distance of

circle center to origin. Third is a root-product proper frequency  =( R· L)
1/2 (geometric mean) that is the

base radius or bottom of a (k) hyperbola of rest energy B=   =Mc
2 above origin in Fig. 3.3.

Phase and group frequencies are defined as ratios or shifts of the geometric mean frequency , and

this begins with the Doppler shift definition of the red L=e  and blue R=e+  CW components. Ratio

values p= cosh  and g= sinh  define each point on a -hyperbola dispersion curve in Fig. 5.5.

Fig. 5.5 is based on circles with three different radii, one for each mean frequency. The base circle-b

drawn centered at origin has radius B=   =Mc
2 of the Lagrangian circle in Fig. 5.1b. A smaller circle-g

has group radius g=Bsinh . A larger circle-p has phase radius p=Bcosh  of the Euclidean circle in Fig.

3.3 and is drawn with dashed lines in Fig. 5.5. (Base value B is scaled for energy here.)

Circle-p of larger radius p=Bcosh  is centered at cp= g=Bsinh , a horizontal distance equal to the

radius of the smaller circle-g, while the latter is centered at E= p=Bcosh , a vertical distance equal to the

radius of the larger circle-p. Tangents that contact circles or hyperbolas define many of the physical

quantities labeled in the zoom-in view of Fig. 5.5b. Intersections and chords shared by two of the circles

also provide the key quantities as seen in Fig. 5.5a.

So far the CW development has emphasized the Doppler ratio as a starting point beginning with

Fig. 2.2 and culminating with the Euclidean means of Fig. 3.3. However, most developments of relativity

start with velocity u, and that geometric approach is excerpted in a simplified construction of Fig. 5.5c

where u/c=45/53 and Fig. 5.5d where u/c=3/5. (Fig. 5.5a-b and most other figures use u/c=3/5.)  Once the

velocity u/c line intersects the basic b-circle and its horizontal tangent of unit-energy (B=1=Mc
2), it only

takes three more lines to derive Lagrangian -L=Bsech , then momentum cp=Bsinh , and finally the

Hamiltonian H=Bcosh . Then a compass is used to check accuracy with the phase p-circle by making sure

it goes from (cp,H) to the (0,B)-point on top of the b-circle. The p-circle goes on to intersect the negative

cp-axis at the Doppler red shift rB=Be+ . Finally, the group g-circle in Fig. 5.5a-b has a chord intersection

with the p-circle that is the hyperbolic contact tangent, and it grazes the -angle normal to the Lagrangian

circle tangent in Fig. 5.5b. This helps to clarify geometry of H-L contact transformations of Fig. 5.1 for

reciprocal space-time ( ,ck) and ( ,u/c). The constructions also apply to space-time.

If Fig. 5.5 is in space-time, the segment -L=Bsech  is Lorentz contraction 
 
= B 1 u2 / c2 . The

H=Bcosh  and cp=Bsinh  segments are, respectively Einstien time dilation d = B / 1 u2 / c2  and

asimultaneity a=ud/c coefficients. Node-to-node or peak-to-peak gaps contract by =4/5 in Fig. 2.2d-e. 

As speed reduces in Fig. 5.5c-d from u/c=45/53 to u/c=3/5 or to lower values, the Lagrangian

velocity angle  and Hamiltonian rapidity  approach the velocity ratio u/c. Galilean velocity addition
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rules resume. In the opposite ultra-relativistic regime,  approaches /2,  approaches , and u/c nears unit

slope or 45° in Fig. 5.5c. But, Galilean-like rules (3.6) apply to rapidity  at all speeds (so far).

ρ

ρ
ρ

ρ

φ

 −

4

4

ρ

ρ cp

H=E

ρ

ρ

(a) Geometry of relativistic transformation
      and wave based mechanics

(b)  Tangent geometry (u/c=3/5)

(c) Basic construction given u/c=45/53

u/c =3/5
u/c =1

cp =3/4

H =5/4

-L =4/5

cp =45/28

H =53/28

-L=28/45

e-ρ=1/2e-ρ=2/7

(d)   u/c=3/5

11

1 1

g-circle

p-circle

Fig. 5.5 Relativistic wave mechanics geometry. (a) Overview. (b-d) Details of contacting tangents.
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Transverse vs. longitudinal Doppler: Stellar aberration

A novel description of relativity by L. C. Epstein in Relativity Visualized introduces a "cosmic

speedometer" consisting of a telescope tube tipped to catch falling light pulses from a distant overhead

star. A stationary telescope points straight up the x-axis at the apparent position S of the star. (Fig. 5.6a)

But, with velocity u=uzez across to the star beam x-axis, the telescope has to tip to catch the starlight, so

the apparent position S' tips toward u. (Fig. 5.6b).

The telescope tips by a stellar aberration angle (  in (5.11a) or Fig. 5.4a.). The sine of angle  is velocity

ratio = uz /c which is the hyper-tangent of relativistic rapidity z (  in (5.12a) or Fig. 5.4b.)

  = uz /c =sin  = tanh z (5.13)

Proper time  and frequency  invariance (3.10) forces 4-vector components normal to velocity u

of a boost to be unchanged. That is, a boost along z of (ct,z) to (ct',z') (or ( ,ckz) to ( ',ckz') ) must

preserve both (x,y)=(x',y') and (ckx,cky)=(ckx',cky') just as a rotation in the xy-plane of (x,y) to (x',y') leaves

unaffected the components (ct,z)=(ct',z') and ( ,ckz)=( ',ckz') transverse to the rotation.

u=c sin 

c
 δδ

S S′
(a) Fixed Observer (b) Moving Observer

σ

k(↓) k′(↓)

c 1-u2/c2=c/cosh υ

ω0

c

z

x

Fig. 5.6 Cosmic speedometer visualization of aberration angle  and transverse Doppler shift cosh .
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k(→)

k(↑)

k(↓)

k′(→)
k′(↑)

k′(←)

k′(↓)

(a) Laser frame ω0         (b) z-(→ Moving) shipω
0  cosh υω0

ω0ω0

ω0 ω0 eυ ω0 e−υ

k(←)

CW Laser-pair
 wavevectors

Fig. 5.7 CW version of cosmic speedometer showing transverse and longitudinal k-vectors.

Invariant (3.10) demands light-speed conservation as sketched in Fig. 5.6b. Starlight speed down

the -tipped telescope is c, so the x-component of starlight velocity reduces from c to

 cx'=c cos =c (1- uz
2/c2) = c/cosh z .  (5.14)

Transformation (5.17a) below assures that x-or-y-components of k  are unchanged by uz-boost.

  (ckx,cky)=(ckx',cky')   (5.15)

So the length of k  increases by a factor cosh  as shown in Fig. 5.7 as does the frequency ' .

 c|k | = c|k | cosh z = 0 cosh z = 0/ (1-u2/c2) (5.16)

If the observer crosses a star ray at very large velocity, that is, lets uz approach c, then the star

angle  approaches 90° and the frequency increases until the observer sees an X-ray or -ray star coming

almost head on! The cosh z factor is a transverse Doppler shift. For large z, it approaches e z, which is

the ordinary longitudinal Doppler shift upon which the CW relativity derivations of Ch. 2 are based.

Relations (5.13-16) are summarized in a 4-vector transformation: 0 has a transverse Doppler shift to

0cosh z, so ckz=0 becomes ckz' = - 0 sinh z , but the x-component is unchanged: ckx' = 0 = ckx.
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(5.17a)

If starlight had been k  or k  waves going along u and z-axis, the usual longitudinal Doppler blue shifts

e+ z or red shifts e z would appear on both the k-vector and the frequency, as stated by the following.
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The Epstein speedometer tracks light pulses and particles in space and time. Instead of space-x and

time-ct coordinates of a Minkowski graph, he plots space coordinate-x against proper time-c . This view

has all things, light  and particle P included, moving at the speed of light as shown in Fig. 5.8. Light

never ages, so its “speedometer” is tipped to the maximum along x-axis.

σ

   Proper time
 cτ= (ct)2-x2

    Coordinate time
ct= (cτ)2+x2

Coordinate
 x=(u/c) ct

cτ

xLight (never ages)
                          x=ct

ο

(Age)

(Distance)
γ

Particle going u in (x,ct)
is going speed c in (x, cτ)

Fig. 5.8 Space-proper-time plot makes all objects move at speed c along their cosmic speedometer.

One cute feature of the Epstein space-proper-time view is its take of the Lorentz-Fitzgerald

contraction of a proper length L to L =L 1-u
2
/c

2
. (Recall discussion around (2.11).) As shown in Fig. 5.9

below, L  is simply the projection onto the x-axis of a length L tipped by .

σ

   Proper time
 cτ= (ct)2-x2

Coordinate
 x=(u/c) ct

cτ

xο

Particle P going u in (x,ct)
is going speed c in (x, cτ)

ctσ
Proper length L

Contracted length
L′=L 1-u2/c2

 L

ct

Comoving particle P′

Fig. 5.9 Space-proper-time plot of Lorentz contraction as geometric projection of rotated line L.
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The problem with the (x,c ) view is that a space-time event is not plotted as a single point for all

observers. Since the time parameter  is an invariant, the (x,c ) graph it is not a metric space.

 Graphical wave 4-vector transformation

Geometric constructions combining Fig. 5.6 and Fig. 5.7 help to quantitatively visualize 4-

wavevector transformations. One is shown in Fig. 5.10. The c-dial of the “speedometer” is first set to the

desired u-speed which determines angle . The top of the c-dial (which may also represent a transverse

ck -vector in units of Lab frequency 0) is projected parallel to the velocity axis until it intersects the c-

dial vertical axis. A transformed ck' -vector of length ' = 0 cosh  results, similar to ck'  in (5.17a).

Both ck'  and ck'  have a projection on the velocity axis of 0sinh  while maintaining their transverse

components 0 and - 0 , respectively, in order to stay on the light cone.

A dashed circle of radius cosh  is drawn concentric to the c-dial and determines the longitudinal

vectors ck'  and ck'  of Doppler shifted length and frequency 0e-  and 0e , respectively, as required

by transformation (5.17b). This construction is part of Fig. 5.4 and Fig. 5.5.

sinh υ

sinh υ

cosh υ
cosh υ

sin σ

e-υ

eυ=sinh υ+cosh υ

u/c

σ

k′(↑) k(↑)

δc=1
k(→)k(←)

k′(→) k′(←)
k′(↓)

kz

kx

Fig. 5.10 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves.
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Symmetry and conservation principles

In Newtonian theory the first law or axiom is momentum conservation. Physical axioms, by

definition, have only experimental proof. Logical proof is impossible unless a theory like Newton’s

becomes sub-summed by a more general theory with finer axioms. Proof of an axiom then undermines it

so it becomes a theorem or result of more basic axioms. (Or else an axiom might be disproved or reduced

to an approximate result subject to certain conditions.)

The logic of axioms yielding results or theorems in mathematical science probably goes back two

thousand years to the time of Euclid’s Elements. Also, axiomatic approaches to philosophy and natural

science show up in writings as early as that of Occam or even Aristotle, but it is not until the European

Renaissance that experiments began to be precise enough to support mathematical models. By the

European Enlightenment period, mathematical logic of physical science had become more effective and

productive than any preceding philosophy due in no small part to increasingly precise evidence.

As stated by introduction, current time and frequency measurements have achieved almost

unimaginable precision. In celebration of this, two continuous wave (CW) axioms (1.1-2) have been used

to undermine Newtonian axioms for mass, energy, and momentum. They then became approximate results

(4.4) and give rise to exact equivalents of Newtonian concepts in Einstein and Planck relativity and

quantum theory in (4.5). It is a non-trivial example of undermining axioms by Occam razor-cutting.

The undermining of Newton’s first axiom (momentum conservation) by the shaved CW axioms is

a good example to expose the logic involved. CW logic leads to the DeBroglie scaling law (4.5b) that

equates momentum p to wavevector k scaled in  units. A rough statement of how CW axioms undermine

or “prove” p-conservation axioms is that k-conservation is required by wave coherence and so p= k must

be conserved, as well. However, that oversimplifies a deeper nature of what is really symmetry logic.

A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles due to

the Lorentz-Poincare isotropy of space-time that invokes invariance to translation T( , )  in the vacuum.

Operator T has plane wave eigenfunctions 
k , = Aei(kx t)  with roots-of-unity eigenvalues ei(k ) .

T k , = ei(k )
k ,  (5.18a) k , T†

= k , e i(k ) (5.18b)

This also applies to 2-part or “2-particle” states K , = k1, 1 k2 , 2
 where exponents add (k, )-values of each

constituent to K=k1+k2 and = 1+ 2, and T( , ) -eigenvalues also have the form ei(K ) of (5.1). Matrix

K , U
K ,  of T-symmetric evolution U is zero unless K = k1 + k2 = K  and = 1 + 2 = .

K , U
K , =

K , T† ( , )UT( , )
K ,        (if UT = TU for all  and )

                      = e i(K )ei(K )
K , U

K , = 0  unless: K = K  and: =

(5.19)

T-symmetry requires total energy  E =  and total momentum  P = K be conserved for archetypical CW

states, but laboratory CW have momentum uncertainty k=1/ x due to finite beam size x and energy

uncertainty due to time limits. So, Newton’s 1
st
 law or axiom is verified but only as an ideal limit.

Symmetry is to physics what religion is to politics. Both are deep and grand in principle but

roundly flaunted in practice. Both gain power quickly by overlooking details. In Ch.4 relativistic and

quantum kinetic properties of a massive “thing” arise from those of an optical 2-CW function in one space
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dimension. This means that mass shares symmetry with 2-CW light, not that mass is 2-CW light. Massive

“things” do not vanish if a laser turns off, but our tiny optical mass N /c
2 is quickly gone!

Puzzling questions remain. Why do simple wave optics lead directly to general properties (4.5) of

relativity and quantum mechanics of a massive particle? How does a cavity of counter-propagating green

light waves act like it holds particles of mass M= /c
2?

A short answer to one question is that particles are waves, too, and so forced by Lorentz symmetry

to use available hyperbolic invariants 
 

2 (ck)2
= (Mc2 / )2  for dispersion. To answer the second question

entails further loss of classical innocence. In Ch. 6 Occam’s razor is again applied to cut semi-classical

CW laser fields down to single field quanta 
 

or photons. So the second short answer is that waves are

particles, too, even for optical dispersion ( 2 (ck)2
= 0) .

By many accounts, quantum theory begins with Planck axiom E= N . This is distinguished from

the scaling law E=s  derived in (4.5a) since its scale factor s= N is not an obvious consequence of CW

phase axioms (1.1-2) that lead to (4.5). CW logic involves additional axioms for Maxwell electromagnetic

energy E and field amplitude quantization to render Planck’s axiom. This is discussed shortly.

1
st
 and 2

nd
 Quantization: phase vs. amplitude

Waves resonate at discrete wave numbers km = m
 L
2

= mk1  in a ring or cavity of length L. Then

relations (4.5b) between k and momentum p force p-quantization 
 
pm = km = mp1  so momentum quantum

numbers
xv

 m=0, ±1, ±2,… count waves on ring L as in Bohr electron orbitals or for cavity modes in (4.6a).

Then Planck dispersion 
 
E

m
= (k

m
) (4.5a) gives electron energy levels Em = m2E1 for the BS approximation

E1 = p1
2 / 2M  or for cavity fundamental frequency levels (4.6b). Wave-fitting in x-space is called 1

st

quantization. Related fitting in wave amplitude space is called 2
nd

 quantization.

Heisenberg
xvi

 showed quanta pm or Em  arise from eigenvalues (literally “own-values”) of matrix

operators  p or  H  whose eigenvectors (“own-vectors”) pm or Em  may be superimposed.

= 1 E1 + 2 E2 + 3 E3 + … (5.20)

(Dirac’s bra-ket
xvii

 notation came later.) Allowing things to be at (or in) m places (or states) allows mean

values 
 
E = H  to range continuously from lowest quantum levels E1  to the highest Em .

 
E = H = 1

2
E1 + 2

2
E2 + 2

2
E2 + … (5.21)

For classicists, the notion that each multiple-personality-k has a probability k

2
seems, if not crazy, then at

least dicey in the sense of Einstein’s skeptical quote, “God does not play dice…” 
xviii

But, superposition is an idea borrowed from classical waves. Resulting interference makes them

ultra-sensitive to relative position and velocity, a first order sensitivity that leads elegantly to relativity

transformation (2.10) and kinematic relations (4.5) by geometry of optical phase kx- t of =Ae
i(kx- t).

Amplitude “A” of wave (1.6) or (1.9) is set arbitrarily since only real wave zeros were needed. It is

ignored in (5.5). Without Maxwell and Planck rules, CW amplitude or wave quantity is undefined and un-

quantized while wave quality (frequency and phase) may be well defined and quantized. Amplitudes need

a similar treatment that is begun in Ch. 6.
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Chapter 6. Variation and quantization of optical amplitudes

What is deduced from wave phase alone? Wave amplitude has so far been skirted for Occam economy:

“Pluralitas non est ponenda sine neccesitate” (Assume no plurality without necessity.) CW phase axioms (1.1-2)

give Lorentz-Doppler and Planck-DeBroglie symmetry relations yet 2-CW amplitudes (1.10) are not

defined beyond assuming their 1-CW amplitudes match. Standing wave grid reference frames in Fig. 2.1

and Fig. 2.2 are just points where amplitude is zero, that is, loci of real wave function roots.

Discussion of non-zero amplitude variation begins with counter-propagating 2-CW dynamics

involving two 1-CW amplitudes A  and A  that we now allow to be unmatched. (A A )

A ei(k x t)
+ A ei(k x t)

= ei(k x t)[A ei(k x t)
+ A e i(k x t) ] (6.1a)

Half-sum mean phase rates (k , ) and half-difference means (k , ) appear here as in (1.10).

k =  (k +  k ) / 2

= ( + ) / 2
(6.1b)

k =  (k  k ) / 2

= ( ) / 2
(6.1c)

Also important is amplitude mean A =  (A +  A ) / 2  and half-difference A =  (A  A ) / 2 . Wave

motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

SWR =
(A  A )

(A +  A )
(6.2a) SWQ =

(A +  A )

(A  A )
(6.2a)

Recall mean frequency ratios for group velocity (2.3b) or its inverse that is phase velocity (2.3a).

Vgroup =
k

= c
( )

( +  )
(6.3a)   Vphase = k

= c
( + )

(  )
(6.3b)

A 2-state amplitude continuum is bounded by a pure right-moving 1-CW (A = 1, A = 0)  of SWR=1 and a

pure left-moving 1-CW (A = 0, A = 1) of SWR=-1. A 2-CW standing-wave (A =
2

  1
= A )  has SWR=0.

Wave paths for various SWR values are drawn in Fig. 6.1 for 600THz 2-CW pairs and in Fig. 6.2 for

Doppler shifted 300THz and 1200THz 2-CW pairs at the same SWR values. The SWQ is the ratio of the

envelope peak (interference maximum) to the envelope valley (interference minimum), and vice versa for

SWR=1/SWQ. Single frequency 2-CW paths of nonzero-SWR in Fig. 6.1 do a galloping motion. Each wave

speeds up to peak speed c/SWR=c·SWQ as it first shrinks to squeeze through its envelope minima and then

slows to resting speed c·SWR as it expands to its maximum amplitude. Only at zero-SWR do 2-CW zero-

paths appear to travel at a constant group speed (6.3a) and phase speed (6.3b) as in Fig. 6.1c or 6.2c. (For

1-CW paths or unit SWR=±1 there is just one speed ±c by axiom (1.1).)

The real and imaginary parts take turns. One gallops while the other rests and vice versa and this

occurs twice each optical period. If frequency ratio (6.3) and amplitude ratio (6.2) have opposite signs as

in Fig. 6.1c (±0 or ± ) and in Fig. 6.2e (±3/5 or ±5/3), wave zero paths will follow a right angle staircase.

1-frequency staircase (Vgroup=0=SWR) in Fig. 6.1c is a Cartesian grid like Fig. 2.1c. 2-frequency waves

(Vgroup 0) have Minkowski grids like Fig. 2.2c for SWR=0 or quasi-Cartesian stair steps like Fig. 6.2e for

Vgroup=-cSWR. To broadcast Cartesian grids to a u-frame one tunes both Vgroup and cSWR to u.
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 (a) - =0.2

- =0.8
SWR=+3/5

 (b) - =0.4

- =0.6

 (c) - =0.5

- =0.5

 (e) - =0.8

- =0.2

 (d) - =0.6

- =0.4 SWR=-1/5

SWR=0

SWR=+1/5

1-frequency
cases

ω =2c, k =2,

ω =2c, k =-2

uGROUP=0

uPHASE

SWR=-3/5
Fig. 6.1 Monochromatic (1-frequency)
2-CW wave space-time patterns.

 (a) - =0.2

- =0.8

 (b) - =0.4

- =0.6

(c) - =0.5

- =0.5

 (d) - =0.6,

- =0.4

 (e) - =0.8

- =0.2

 ω =4c, k =4

ω =1c, k =-1

uGROUP/c=3/5

uPHASE/c=5/3

SWR=+3/5

SWR=+1/5

SWR=0

SWR=-1/5

SWR=-3/5

2-frequency
cases

Fig. 6.2 Dichromatic (2-frequency)
2-CW wave space-time patterns.
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Galloping is a fundamental interference property that may be clarified by analogy with elliptic

orbits of isotropic 2D-harmonic oscillators and in particular with elliptic polarization of optical wave

amplitudes. Fig. 6.3 relates polarization states and wave states of Fig. 6.1 beginning with left (right)-

circular polarization that is analogous to a left (right)-moving wave in Fig. 6.3g (Fig. 6.3a). As sketched in

Fig. 6.3(b-e), galloping waves are general cases analogous to general states of elliptic polarization or

general 2DHO orbits obeying a Keplerian geometry shown in Fig. 6.3h. Standing waves correspond to

plane-polarization. Polarization in the x-plane of Fig. 6.3d corresponds to a standing cosine wave and y-

plane polarization (not shown) would correspond to a standing sine wave.

 Isotropic oscillator orbits obey Kepler’s law of constant orbital momentum. Orbit angular velocity

slows down by a factor b/a at major axes or aphelions ±a and then speeds up by a factor a/b at minor axes

or perihelions ±b just as a galloping wave, twice in each period, slows down to SWR·c and speeds up to

SWQ·c. The galloping or eccentric motion of the eccentric anomaly angle (t) in Fig. 6.3h is a projection

of a uniformly rotating mean anomaly (phase angle ·t) of the isotropic oscillator, and this gives a

Keplarian relation of the two angles seen in the figure.

tan (t) =
b

a
tan t (6.4a)

The eccentric anomaly time derivative of  (angular velocity) gallops between  ·b/a and  ·a/b.

 

=
d

dt
=

b

a

sec2 t

sec2
=

b / a

cos2 t + (b / a)2 sin2 t
=

b / a  for: t = 0,  ,  2 ...

a / b   t = / 2,  3 / 2,...
(6.4b)

The product of angular moment r2 and 
 

is orbital momentum, a constant proportional to ellipse area.

r2 d

dt
= constant = (a2 cos2 t + b2 sin2 t)

d

dt
= ab

Consider galloping wave zeros of a monochromatic wave (6.1a) having SWQ (6.2b).

0 = Re x,t( ) = Re A e
i k0 x 0t( )

+ A e
i k0 x 0t( )   where: = 0 = = ck0 = ck

0 = A cos k0x cos 0t + sin k0x sin 0t + A cos k0x cos 0t sin k0x sin 0t

A + A( ) cos k0x cos 0t = A A( ) sin k0x sin 0t

Space k0x varies with time 0t in the same way that eccentric anomaly varies in (6.4a).

tan k0x = SWQ cot 0t = SWQ tan 0 t   where: 0 t = 0t / 2 (6.5a)

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

dx

dt
= c SWQ

sec2
0 t

sec2 k0x
=

c SWQ

cos2
0 t + SWQ2 sin2

0 t
=

c SWQ  for: t = 0,  ,  2 ...

c SWR   t = / 2,  3 / 2,...
(6.5b)

Single frequency 2-CW paths in Fig. 6.1 have a constant product of instantaneous wave velocity and wave

amplitude analogous to the constant product of orbital velocity and radius. So vacuum optical amplitude

and phase motion obey a funny version of Kepler and Galileo’s rules. The extent to which 14
th

 century

geometric relations underlie basic wave physics has not been fully appreciated.
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Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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Maxwell amplitudes and energy

Classical Maxwell field amplitudes E = A  and B = A  are derivatives of vector potential A. Maxwell

energy U per volume V or total energy U·V is a sum of amplitude squares E•E and c2
B•B.

U V = 0
2

E • E +
1

2μ0
B • B V μ0 0 =

1

c2
(6.7)

Fourier analysis of A into amplitudes ak and ak
* leads to a harmonic oscillator sum over each plane CW

mode frequency
k
= ±c | k

m
| , km-vector allowed by a large-cavity, and polarization =x,y normal to km.

U V = 2 0V k
2ak

* ak (6.8)

Harmonic oscillator frequency is independent of amplitude. This is consistent with CW phase axiom (1.1)

and dispersion relations (3.5) derived from 2-CW superposition, but such a simple axiom seems unable to

derive the Maxwell vector amplitude structure of 2-dimensional polarization normal to km of each wave

mode or even to establish that its wave variables A, B, E, or km are, in fact, 3D vectors.

The CW axiom (1.1) gives what is effectively a 2-dimensional harmonic oscillator (2DHO) with

two complex amplitudes (aL, aR) for the two longitudinal propagation directions, but each comes with two

transverse polarization amplitudes (ax, ay) that describe the second 2DHO in Maxwell light, namely

polarization ellipsometry used in Fig. 6.3 as an analogy for propagation left-and-right along z.

Quantized optical fields

Mode amplitude ak or ak
*  in classical electromagnetic energy k

2ak
*ak are replaced by oscillator operators

 
ak or 

 
ak

† for a field Hamiltonian with explicit linear frequency dependence of Planck.

 
 
H = k (ak

†ak ) H = k Nk (6.9)

The H-eigenstates 
 
N1N2 Nk for exactly quantized photon numbers 

 
ak

†
ak = Nk  fix a definite energy value

 k
N

k
for each mode-km but has quite uncertain field phase. Average energy of one mode is

 

Uk V = 2 0V Ek • Ek = k Nk (6.10a)

where a 1-CW-1-photon E-field and vector potential A-amplitude is as follows.

 

Ek
Nk =1

=
k

2 0V
(6.10b)

 

Ak
Nk =1

=
2 0 kV

(6.10c)

Field quantization is called 2
nd

-quantization to distinguish 1
st
-quantization km mode numbers m,

used for classical light, from “purely quantum” photon numbers n = Nkm
for wave amplitude. This may be a

prejudice that waves (particles) are usual (unusual) for light but unusual (usual) for matter.

Amplitudes involve relations (6.7) to (6.10) that are more complex than axioms (1.1-2) for wave

phase. While Maxwell-Planck relations lack the simplicity of the latter, they do derive the linear

dispersion (1.1) by Fourier transform of the Maxwell wave equations, and they show optical wave

amplitude has an internal symmetry analogous to that of wave frequency. The following discussion of this

analogy involves a Doppler shift of wave amplitude with invariance or covariance of photon number Nk

and standing wave ratio (SWR) (6.5). Also, one begins to see how Born quantum probability formulas

n = *  arise and are consistent with Dirac amplitude covariance.
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Relativistic 1-CW covariance of Poynting flux

Maxwell-Planck energy density U(Joule/m
3
) in (6.10a) leads to a related Poynting flux S[Joule/(m

2
·s)].

 

S = E B = Uk ck̂ = 2 0c Ek • Ek k̂ = knk k̂    where: nk = cNk / V m 2s 1 (6.11)

Flux S contains two frequency factors, the fundamental laser frequency k and the photon count rate nk

per[ (m
2
·s)]. Frequency k is quantum quality of a laser beam and rate nk is its quantum quantity. The

product k·nk is Poynting flux. Rate nk and frequency k both Doppler shift by an exponential e±  of

rapidity  in (2.16). So do 1-CW fields E±k as may be shown by Lorentz transforming them directly.

E
+k = e+ E

+k (6.12a) E k = e E k (6.12b)

Thus both electric field polarization E-amplitudes Ex an Ey of a 1-CW field undergo the same

e±  Doppler shift that the frequency k or wavevector k experience. If E in (6.11) scaled by 1-photon factor

(6.10) a probability wave  follows whose square  is a volume photon count N/(m
3
).

k=

 

2 0V

k
Ek  k* k = Nk = Nk = nk

V

c
(6.13a)

Or, a flux probability wave  is defined so its square   is an expected flux photon count n/(m
2
·s).

 

k =
2 0c

k
Ek k * k = nk = nk =

c

V
Nk (6.13b)

Due to the 1 / k scaling of (6.13) the Doppler factor of 
±k drops an e± /2 factor from Ek in (6.12).

 Lz ( ) =
+k

k

=
e+ /2 0

0 e /2
+k

k

= e z /2
(6.14)

This is a starting point for the spinor form of Lorentz transformation for Dirac amplitudes.

 Relativistic 2-CW invariance of cavity quanta

Mean photon number Nk of a 2-CW cavity mode, unlike a 1-CW flux quantum nk, is invariant to cavity

speed. By analogy, 2-CW modes have variant group-phase velocity (Vgroup, Vphase), energy-momentum

( ck, ), but invariant mean velocity c = VgroupVphase and frequency =
+k k =

2 c2k2 .

Vphase

c
=

+k k

+k + k
 (6.15a)

Vgroup

c
=

+k k

+k + k
(6.15b)

Linear dispersion ±k=±ck and (1.11) or (2.7) are used. Note the analogy to SWR relations (6.2).

SWR =
E
+k E k

E
+k + E k

(6.15c) SWQ =
E
+k + E k

E
+k E k

(6.15d)

Each ratio (6.15) is a wave velocity that Doppler-transforms like relativistic (non-Galilean) velocity.

SWR =
SWR + u / c

1+ SWR u / c
(6.16a)

Vm
c

=
Vm / c + u / c

1+ (Vm / c) (u / c)
(6.16b)

Velocity uAB/c=tanh AB is a hyperbolic sum since rapidity is a simple sum AB= A+ B by (3.6).

uAB
c

= tanh AB = tanh( A + B ) =
tanh A + tanh B

1+ tanh A tanh B
=

uA / c + uB / c

1+ uAuB / c2
(6.17)
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The energy and momentum flux values are found for counter-k 2-CW beam functions 
 

.

 
k = ei(k x t)

+ ei(k x t)

Lab 1-CW flux number expectation values | k |2= nk  give 2-CW flux expectations in lab. 

 

E = = n   + n =
2
+

2

cp = ck = ck n + ck n =
2 2

The relation (6.13b) of quantum field k  and classical Maxwell Ek -field expectation is used.

 

E =
2
+

2
= 2 0c E

2
+ E

2
     (6.18a)

 

cp =
2 2

= 2 0c E
2

E
2

(6.18b)

Values cp and E  lie on an invariant hyperbola of constant geometric means N or | E | 2
.

E
2

cp
2
= 2c 0( )

2
E

2
+ E

2
2

E
2

E
2

2

= 2c 0( )
2

4 E
2

E
2

 

E
2

cp
2
= 4 2c 0 E

2
2c 0 E

2
= 4 n( )  n( ) (6.19)

 
E

2
cp

2
 =                  2c 0 2E

2
              =      ( ) 2n( ) (6.20a)

The geometric mean frequency , mean quantum number n , and mean field | E |  are defined.

 =  (6.20b)  n = n n (6.20c) | E |= E E (6.20d)

Doppler relations imply Lorentz invariance for the mean number n  and for the mean frequency 

as well as their geometric mean n that is 2c 0 times the mean field | E | and applies to a general 2-CW

beam function . A factor 2 on | 2E |  or 2n  in (6.20a) is consistent with 1-photon 2-CW states having

equal average number n = n = n =2
1 and total1-photon Planck energy expectation E= .

Ideal cavities balance field E = E = E , frequency = = , and number. But, a general

beam with , n n , and E E  has a center-of-momentum CoM-frame of zero flux where

ECoM
= ECoM  by (6.18b), an isochromatic IsoC-frame with IsoC

=
IsoC , and an IsoN-frame with

balanced photon count N IsoN
= N IsoN . Frame speeds u  may be distinct as sketched in Fig. 6.4.

uCoM

c
=

E E

E + E
(6.21a)

uIsoC

c
=

+
=

V Group

c
(6.21b)

uIsoN

c
=

n n

n + n
(6.21c)

Flux invariant | E |  is maximized by balanced amplitude E = E but is zero if E  or E  is zero.

Thus optical rest mass (6.20a) decreases continuously as a 2-CW beam is unbalanced toward 1-CW.
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Fig. 6.4. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.

It is argued in Ch. 4 that mass is a coherent 2-CW interference effect that is not possible for a 1-CW

beam. If we replace Planck energy relation = Nh  by a Maslov form = (N + )h it has a tiny zero-

point energy minimum h . Does a tiny mass h / c2  exist for 1-CW and even 0-CW beams in all frames

in spite of the incoherence of such zero-point fluctuations? Such a presence in (6.20) may be ruled out if

the speed-of-light axiom (1.1) is exact. There may still be much to learn about zero-point effects in QED

and cosmology but this seems to indicate that their direct effects are effectively non-existent.
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N-Photon vs Coherent- -states

Optical fields A or E have quantum expectation values of field operators based on mode amplitudes ak or

ak
*  in classical energy k

2ak
*ak . Each ak or ak

*  is replaced by oscillator boson operator 
 
ak or 

 
ak

† in a

quantum field Hamiltonian 
  
H =

k
(a

k
†
a

k
+ ) whose eigenstates 

 
N1N2 Nk have exact quantized photon

numbers
 

ak
†
ak = Nk  for each mode-km.

Each mode phase quanta m and amplitude quanta Nm are invariant constants that define another

hyperbola with Einstein-Planck proper frequency
 

N ,m = N
m m  as sketched in Fig. 6.4a and Fig. 4.2. The

problem is that absolute certainty of photon number Nm implies totally uncertain field phase just as

absolutely certain km of 1-CW symmetry implies totally uncertain position in space and time.

Space-time position coordinates were defined by taking 1-CW combinations to make 2-CW

coordinates of Fig. 2.1c or Fig. 2.2c. Ultimately an n-CW pulse-wave (PW) of Fig. 2.1d or Fig. 2.2d was

localized with as low a space-time uncertainty  as desired but it acquires per-space uncertainty or

bandwidth  according to Fourier-Heisenberg relation  ·  >1.

So also must photon-number states be combined if amplitude and phase uncertainty are to be

reduced to the point where wave space-time coordinates can emerge. Such combinations are known as

coherent states or -states of harmonic oscillation. Sharper wave zeros require fuzzier hyperbolas.

Fuzzy hyperbolas vs. fuzzy coordinates

Model micro-laser states are coherent states =
N N

N made of single-mode eigenstates

 
N = (a1

† )N 0 with amplitudes 
N
=

Ne
2 /2 / N ! . Variable = x + ip = ei  is average mode phase, and

(x = Re , p = Im ) , rescaled by a quantum field factor f, are field averages 
 

A , A = E( ) .

 

A = A = + *( ) f = + *( )
2 0 V

(6.22)

Amplitude factor f makes Planck’s 
 E = N  equal Maxwell field energy E = U V .

 
U V = 2 0

2V A2
=

2
= N (6.23)

A fundamental laser mode in a 0.25μm cubic cavity (See E-wave sketched in a strip of Fig. 2.2c.)

has green light with 
 = 4 10 19 Joule  or 2.5eV per photon. The average photon number N =

2
= 1010

models a laser with mean energy 
 
E = U V = N = 4.0 nanoJ  in a volume V = (4

1 μm)3 . Photon number

uncertainty N = = 105 varies inversely to phase uncertainty.

N = (6.24a)
 = / 3 10 5 (6.24b)

Amplitude expectation value N A N  is zero for N states due to incoherence of phase, but

number value 
 

N a
k
†
a

k
N = N  is exact as is proper frequency N  due to the phase factor (e i t )N of 

 
(a1

† )N .

A volume V with (N = 1010 ) -photons has energy
 E = N  or mass-equivalent M=E / c2

=10 25 kg  on a

hyperbola 1010 quanta above the N=1 hyperbola. A coherent-state = 105 has a mass M = 10 25 kg  with

uncertainty M=10 30 kg  so its phase uncertainty 3 10 5  is low enough to make an (x,ct)- grid (Fig. 6.6a) but

a low-  state (Fig. 6.6c) has too few photon counts-per-grid to plot sharply. Photon-number eigenstate N

in Fig. 6.6d is a total wash even for high-N since N = 0  implies maximal phase uncertainty ( = >>2 ).
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(a) |α=105〉 (b) |α=103〉 (c) |α=101〉 (d) |n=1010〉
Quantum field coherent α-states Photon number n-states

Fig. 6.6 Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).

Deeper symmetry aspects of pair creation

Discussion of relativity and quantum theory of wave amplitude requires further details. This

includes Dirac’s extraordinary theory that 2-CW light of certain frequencies in a vacuum may create

“real” matter that does not vanish when the light is turned off. For example, we know that two 0.51MeV -

ray photons of frequency e=mec
2
/  may create an electron and positron “hole” that form positronium

e + e  pairs. Also, 0.94GeV -rays with p=mpc
2
/  may create proton-anti-proton p + p  pairs, and so on.

Dirac creation processes raise questions, “What “cavity” traps 0.51MeV -pairs into stable e + e

pairs?” The discussion so far has only begun to define 2-CW symmetry properties by phase rates in per-

spacetime (K, )-quantum variables. Conservation (5.2) of these kinetic (K, )-values implies that e + e

or p + p pairs have the same (K, )-values as the 2-CW light that “creates” them.

However, space-time symmetry arguments by themselves seem unable to derive internal lepton or

baryon structure that might show how light becomes “trapped.” That question still lies beyond the scope

of this discussion, and indeed, still largely beyond what is presently known. In fact, the current standard

Weinberg-Salam model of high energy electroweak and strong quantum-chromo-dynamics (QCD) has

abandoned the Dirac picture almost entirely. Pauli’s apparent dislike for Dirac may have had an effect.

In its place have there has arisen a large and controversial area known as super-symmetric-string-

theory or “superstrings” that has generated over 10,000 publications in about 40 years and promised a

“theory of everything” that would include quantum gravity. However, this flurry of mathematical activity

has not yet yielded new experimental or physical insight nor has it provided a better way to study or teach

existing areas of classical mechanics, relativity or quantum theory.

Two books give well written history of super-strings and related philosophy. One is by Lee Smolin

and the other by Peter Woik. They show the presence at the highest academic levels of a rather pernicious

group-think or make-believe that seems to have long given up the logical ideals of William of Occam.

L. Smolin, Trouble in Physics: The rise of strings and the fall of a science, XXX (xxx2006)

P. Woik, Not even GNORW: The Failure of String Theory…, Persius Basic Books (New York 2006).
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Chapter 7. Compton Effects and Optical Transitions

In Ch. 4-5 we found that space-time symmetry of a particle of mass M is like that of a 2-CW

optical cavity wave of frequency =Mc
2
/ . Here we relate 2-CW(k, ) “baseball diamond” Doppler shifts

from Ch. 2-3 to light-matter collisions and scattering by molecules, atoms or nuclei. Doppler shifts are

related to recoil shifts in 1-photon emission, 1-photon absorption, and 2-photon Compton scattering.

1-photon kinematics for emission and absorption of light

Photo-emission and photo-absorption allow you to see. In order to read this page, dye molecules in

your eye absorb light emitted by atoms in a computer screen or lamp or other source such as the sun if

you’re using daylight or moonlight. Without these processes we would all be blind.

There are several ways to describe and diagram emission and absorption by quantum levels. The

first are Grotian level diagrams shown in Fig. 7.1a for a “quantum jump” between a molecular, atomic, or

nuclear energy level-Em and a lower level-E . Each “jump” involves light at transition frequency m  that is

the beat frequency m = m  between Planck frequency m of level Em and  of level E .

Em = m  (7.1a) E  = 
 
 (7.1b)

Planck relation (4.5a) applies. We can only see beats or relative differences m  as noted vis-à-vis (4.12).

Em  =  m  = ( m ) = Em E  (7.1c)

Beat-frequency light is indicated by a wave emerging from a line connecting the energy level Em to E  in

Fig. 7.1a. A wavy single arrow going out (or in) indicates output emission (or input absorption).

The kicker: Recoil shifts

Optical transitions have, quite literally, a “kicker.” Due to Axiom-1 ( =±ck), each 1-CW causing a

frequency shift m = m  must come with a “kick” due to k-vector shift km =( m )/c. The kick or

recoil by visible light is usually ignorable since 1/c is so tiny, but it is important for high-resolution spectra

and for high-energy light such as -rays. Grotian diagrams in Fig. 7.1a tend to obscure or ignore recoil.

Feynman diagrams in Fig. 7.1b show atomic K-vectors K=( ,ck) being kicked into K =( ,ck ) as

atoms emit (or absorb) photons with vector K´K= K´K(±1,1). Baseball geometry in Fig. 7.2a fits vectors

K´K to connect low-level ( ) and mid-level ( m) hyperbolas and conserve total K-vector consistent with

translation symmetry conservation rules of (5.19). Fig. 7.2b shows head-to-tail vector sum triangles.

 K = K  K´K [emission] K = K+ K´K [absorption]

Vector M´=( ,ck)= m(cosh , sinh ) on m-hyperbola in Fig. 7.2a has recoil rapidity  and invariant m and

rest energy Em = m=Mmc
2. Vector L´ on lower -hyperbola below M´ has the same  but lower E = .

K-vector baseball diagram geometry follows directly from earlier Fig. 2.2 and Fig. 3.3.

This is not rocket science! (Or is it?)

Some quantum texts call photons “light bullets” since they have a “kick.” Doppler redshift relation

 =e m (top of Fig. 7.2a) shows atoms are like light-rockets. Consider invariant rest-mass ratio Mm/M .

Mm/M  = m/ =e+ (7.2a) c·  =c·ln(Mm/M )~u (7.2b)

At low recoil (  ~u/c<<1) this is rocket equation (8.8b Unit 1) if “exhaust velocity” is light-speed c. By

uncertainty relation · t~1 high quality emission (low ) means long time t to “exhaust” light.
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Fig. 7.1 Quantum optical transitions represented by (a) Grotian  and (b) Feynman diagrams.
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Fig. 7.2 Optical transitions displayed on (a) “Baseball diamond” and (b) Vector conservation sums.
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A typical atomic transition (such as we use to read by) has a huge spectral quality (q) factor.

q= 0/2 =(angular resonant frequency)/(transition decay rate)= 0· t = 0/ 

Atomic q factors, discussed after (10.49) in Ch. 10 of Unit 1, range from 10
6
 to over 10

8
. The q qualifies a

resonance by giving its amplification factor (over DC), its spectral purity, and its lifetime t in numbers of

atomic beat periods or “heartbeats” it takes to complete a transition with 96% certainty. (Recall: e ~4%.)

High quality means a long “burn” to reduce an atomic mass energy from Em=Mmc
2 to E =M c

2, so

maybe a rocket formula u~c·ln(Mm/M ) makes sense. (Exact formula (7.2a) is  =ln(Mm/M ).) Just saying

quantum transitions are “jumps” misses a lot of physics. Getting there is (at least) half the fun!

2-photon processes: Rayleigh-Thompson-Compton scattering

Atomic 1-photon absorption shown in Fig. 7.1 is like an inelastic (“ka-runch”) SUV-VW collision in

Fig. 1.1b or Fig. 2.1 of Unit 1. An atom (SUV) absorbs a photon (VW) to become more massive as it

“jumps” from low level M  to a higher mass Mm. While we just write off lost energy in SUV-VW crashes,

the energy of atom plus light is conserved and time reversible. An SUV-VW cannot “uncrash” but atoms

may emit light as well as absorb it. Atomic emission equation (7.2) is analogous to rocket propulsion.

An atomic 2-photon process of Compton scattering is sketched in Fig. 7.3a. It is like an elastic (“ka-

bong”) SUV-VW collision in Fig. 2.2 of Unit 1. Atom-M  (SUV) briefly absorbs the K´K-photon (VW) but

then just as quickly bounces it back as the atom recoils and returns to its initial M -level after emitting the

photon. Fig. 2.2 of Unit 1 is in Center-of-Momentum COM frame as are the process diagrams in Fig. 7.3

where k-component of total- K is zero. So, non-resonant Compton processes are a quick 1-2-punch.

Car 54 where are you?

An atomic 2-photon absorption process sketched in Fig. 7.3a is somewhat analogous to a 3-car pile-

up. (See car crash in Fig. 8.5 of Unit 1.) However, wave time-energy uncertainty fuzzes auto-analogies.

Pure ( ,ck)-per-space-time pictures imply delocalization in classical space-time. CW ( ,ck) represented in

Fig. 7.1 thru Fig. 7.4 make CW space-time grids everywhere and forever. Nevertheless, scaled CW ( ,ck)

vectors overlap PW (x,ct)-paths as shown in Fig. 1.5 or Fig. 6.7 of Unit 1. Then Feynman ( ,ck)-diagrams

mimic (x,ct)-diagrams and K-arrows can represent PW (x,ct)-collision paths resembling car crashes.

However, with low- t PW paths comes fuzzy K-conservation. Time interval t and space x is

large for initial and final vectors in Fig. 7.3a but not so for mid lines M or K. Thus intermediate ( ,ck)

values must be fuzzy and include combinations of non-resonant values known as virtual state sums.

Suspended 2-photon diamonds

Photon lines in Fig. 7.3a arise from diamonds in Fig. 7.4 that resemble a ±45° baseball diamond

used in Fig. 2.1 to develop relativity. However, the general diamond example in Fig. 7.4b differs in that 1
st

and 3
rd

 bases are not on the light-cone baselines but suspended by vectors L and L´ like chopsticks pinch a

piece of tofu. A new home plate lies at K( k) above origin and 2
nd

 base is at M( m) above that. Pitcher’s-

mound lies at L( ) just below diamond center (as it does in regulation baseball). Half-sum-and-difference

of invariant [ k, , m] define a diamond with “rocket ratios” m/ = / k=e  and geo-mean = ( m· k).

Diamond center: 
 2
1 ( m+ k) =  cosh   (7.3a) Diamond radius: 

 2
1 ( m- k) =  sinh   (7.3b)

One exponential e  ratio defines a whole geometric series of hyperbola levels with equal recoil rapidity .
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We now look at recoil effects in frames other than COM. We imagine we can “cut-and-paste” or

create-and-destroy photon frequencies in the 2-CW cavity baseball diamond model of mass kinetics.

Feynman’s Father’s query

Right after Richard Feynman graduated from MIT his father asked a question, “Where is a photon

before an atom emits it?” The question caught the new graduate off guard and it appeared that maybe a

pricey MIT education was not worth all the money that his father had paid.
xix

 Let us give a quantitative

answer for Feynman’s father’s query using 2-CW optical analog for an atom that emits some of its “inner

light” following its baseball-diamond geometry in Fig. 7.2.

To apply baseball diamonds of Fig. 7.2 to an atom, we say it has the symmetry of 2-CW cavity

state represented by 2
nd

 base K2  in the lower half Fig. 7.5a. A 1
st
 base K1= ( , )  and 3

rd
 base K3= ( , )

sum to an atom’s 2
nd

 base K2= (0, 2 )  on a hyperbola of mass MQ at Q.

 
M

Q
= 2 / c2

The pitcher’s mound P represents a 1-photon momentum-energy expectation value EP at K
p
= (1 / 2)K2

 
 
E

P
= / c2  

Point Q in Fig. 7.5a represents a 2-photon state of energy MQ=2EP.

In Fig. 7.5a an emitted photon QP  is imagined being “cut” from 3
rd

 base so 3 = shrinks by

what we will call
xx

 a father-Feynman factor ff as 3
rd

 base alone loses the outgoing QP photon energy.

3 = ff = 3 QP  (ff=1/4 in Fig. 7.5a.)

If 1
st
 base stays at its old value ( 1 = = 1 )  the 2

nd
 base moves from Q on its initial 2 -hyperbola to P  on

its final 2  -hyperbola. Its new proper frequency  is a geometric mean of 3
rd

 and 1
st
 as in Fig. 3.3.

2 = 2 3 1 = 2 ff (7.4a)

3 = f = ff (7.4b)

1 = f 1
= f 1 f = 1  (7.4c)

The new 3
rd

 base is a Feynman
xxi

redshift f ff  of the new mean  and a father-Feynman shift ff

of the old bases values 3 = = 1 = 1 . They are each an inverse-shift f -1 of the new mean . The ff-shift

is a product of two f-shifts ff=f 
2. This tricky notation is due to the Doppler derived group multiplication

rule (3.5c) for an f = b3 2 and an equal f = b2 1 to give composite ff = b3 1 = b3 2 b2 1 = f 2 .

In Fig. 7.5a old 1
st
 base and new 3

rd
 base span a diamond of rapidity  like Fig. 3.3b where e =

2
1 .

That redshift / = f =
2
1  in Fig. 7.5a-c is another example of “rocket” mass ratio introduced in (7.2).

e = f ff = / = MP / MQ (7.5)

Photo-absorption and Compton effects

The factor ff = 4
1 , chosen in Fig. 7.5a, cuts a fraction 1 ff = 4

3  off the 3
rd

 base photon 3 = to emit

QP = 4
3 and reduces mass M2 by factor f = ff = 2

1  to M1. Doppler factor f -1=2=e  gives an atomic recoil

boost of u = 5
3c . (Recall Fig. 2.2 where b=2 gives frame velocity u = 5

3c .) Mass M1 gets that boost by

absorbing PQ = 2
3 to jump from P up to Q in Fig. 7.5b. Inverse QP  cut falls from Q to P in Fig. 7.5a.

Paste PQ = 2
3  onto 1

st
 baseline in Fig. 7.5b ups M1 to M2 on -axis P Q  in Fig. 7.5c.
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Fig. 7.5 Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering
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Final -frame shift is b=e  =2 of rapidity = ln 2  for either process. Emission Q P is the final

“cut” in a Compton “paste-and-cut” P Q P  process with the Feynman diagram in Fig. 7.6c. Its

segments form an OPQ P O  “kite” in Fig. 7.5c that is bent from a symmetric kite OP QP O  by the boost

= ln 2  of the main kite OQ-axis relative to either of its wings OP  or OP . Each kite is a suspended

baseball diamond like Fig. 7.4b or a boosted -warped version of one.

Both “paste-and-cut” (P Q P )  and reverse “cut-and-paste” (P O P )  processes in Fig. 7.6

entail total recoil boost 2 = ln 22  from the lab axis to an axis of the Compton scattered atom in Fig.

7.5c. The latter first “cuts” down to point O  on a 2 -hyperbola by emitting photon PO =8
3  before

absorbing the O P = 2
3

= PQ  photon that comes first in the former sequence.

An inverse Compton process (Q P Q ) emits photon QP =4
3 (as in Fig. 7.5a) then absorbs

photon P Q = 3 that moves it from rapidity  on hyperbola- to rapidity 2  on hyperbola 2 at point

Q (upper right of Fig. 7.5c). Here a fixed mass
 
M2 = 2 emits 4

3  to gain speed (c
u
= 5

3) by reducing its

mass to
 
M1 =  then recovers mass by absorbing 3  to end up at an even faster speed (c

u
= 1 7

15) .

Photon K-vectors for any Compton process between 2:1-rest mass hyperbolas make a -warped

baseball diamond with =ln2 according to (7.5) as shown in Fig. 7.5c and Fig. 7.6a. Like a 2:1-Doppler

diamond in Fig. 3.3b, it has an aspect ratio that is twice its blue-shift b=e  =2, that is 2e  =4.

A 2:1-rest mass drop shows geometry more clearly than a realistic ratio 10
10

:10
10

-1 for an atomic

transition that is about 10
-10 of rest mass. Atomic rest-energy level ratios Em: Eh are close to unity and

fortunately so for our health! Harmonic levels with integral m:h ratios used in Fig. 7.5 apply to optical-

cavity models but m and h are small integers only for special spectra like Rydberg or rotor transitions.

Compton-Doppler staircase

In going from higher hyperbola h  to middle m the lab recoil shift is fhm = e hm = h
m  by (7.5),

and its emitted frequency h m  is the altitude of a kite triangle, like P QP in Fig. 7.5c, given as follows.

hm = (1 fhm
2)

h

2
=

h2 m2

2h
= m sinh hm (7.6)

The example in Fig. 7.5a has QP = 4
3

= 2,1 . Doppler shifts of 2,1by f2,1 = 2
1  form a geometric series

 
( , 32

3 , 16
3 , 8

3, 4
3, 2

3, 3,6,12, )  of steps on a Compton staircase PQ P Q ... between (2:1)-levels 2 and1  in

Fig. 7.5c. For any rational level ratio e hm = m
h , each dilation factor

hm
, recoil

hm
, or ratio hm /  is a

rational ratio, too, and the Pythagorean sum 1 =
hm

2
+

hm
2  belongs to a rational triangle, e.g.,1 =

52
32

+
52
42

.

  hm =
uhm

c
= tanh hm =

h2 m2

h2
+ m2

(7.7a)

hm = cosh hm =
h2

+ m2

2mh
(7.7b)  sinh hm =

h2 m2

2mh
(7.7c)

Recoil trims emitted hm  below =|h-m|  by a factor (h+m)/2h while absorption mh  costs more

than  by a factor (h+m)/2m. Newtonian recoil KE
h

M
h
u2 / 2  is a circle of radius M

h
c2  in Fig. 7.5, so even

low-u recoil costs a little. Photons, like money-changing tourists, get nicked coming and going.
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Fig. 7.6 Compton scattering. (a) Vector sums on mass hyperbolas of low 
 
, medium m , and high h. (b-

c) Feynman graphs. (d) Center of Momentum (COM) vector sums. (e-f) COM Feynman graphs.

An absorption (m<h) frequency m h =
IN is greater than emission h m  by a factor fmh = m

h . A

Compton OUT due to IN  is less than hm  by the inverse factor fmh
1
= fhm = h

m . Hence a Compton output

OUT  is less than its input IN by the Doppler ratio-square ff = fhm
2

= ( h
m )2  as shown before.

IN
= mh = m

h
hm  , OUT

= h
m

h m = ( h
m )2 IN (7.8)

Compton processes in Fig. 7.6 start on middle m = m  hyperbola to do a 2-photon bounce off a lower

 
=  or a higher 

h
= h hyperbola. An intermediate “bouncer” is said to be a virtual level if its  or

h values are integration variables being summed. A process (m h m) or 
 
(m m) is said to be a

resonant Compton process if an h-state or -state exists. Whether numbers m, h , and  are integers in a

cavity model or real values for an atomic model, the results (7.6), (7.7), and (7.8) apply in any case.

Compton wavelength sum rule

Inverse frequencies 
 

1
= (kc) 1

= (2 c) 1 / c  give the famous Compton wavelength sum rule.

( OUT ) 1
= ( IN ) 1

+ 2(m ) 1  , or:  
 

OUT
=

IN
+ 2 C  where: 

 

C =
c

m
=

M mc
. (7.9)

Compton radius
 C C / 2 is a minimum cavity radius with a frequency equal to the “zwitterbevegun” of

mass Mm. As input 
 

IN  reflects from an Mm-cavity it picks up diameter
 
2 C to become 

 
OUT . Size 

 
OUT

depends on mass Mm of level-m, not on Mh or M  of higher level-h or lower level-  that bounces level-m.
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Compton radius 
 C

= / Mc  is a curious inverse measure of mass size. Larger mass M has a smaller

 C
size that recoils less and reflects photons more elastically. Elastic mirror reflection is what we expect in

classical wave optics where light is assumed to be as “light” as anything can be.

Geometric transition series

A geometric f p -series
 

(… f 2 , f 1,1, f 1, f 2
…) of levels also has a geometric series f p f 2 1

2  of

transitions. This gives Compton “nets” such as the ( f = 2) -net in Fig. 7.7a or a finer ( f = 2) -net in Fig.

7.7b. Finer fractions (f 1) give smaller jumps and acceleration that is more continuous and constant.

An acceleration of space-time frames by geometric or exponential frequency chirping is described

in Chapter 8. Space-time grid in Fig. 8.2 has a geometric spacing like the Compton nets in Fig. 7.7 but

with a (P,G)
 

(P,G) axis switch and is an optical version of Einstein’s famous thought experiment.

Optical PW bounce and accordian-like CW shifts

If the  vs ck net plots in Fig. 7.7 were instead space-time ct vs x plots one could imagine each vertically

sloping line is a path of an object moving at constant rapidity  away from the stationary ( =0) time ct-axis

of the lab frame. Each hyperbola in Fig. 7.7a crosses a path at proper times =… 0, 2 0, 4 0,… that are local

times on each object’s ct -axis given e =f=2. For general f=e , the times are =… 0, f 0, f
2

0, f
3

0, ….

Imagine each ±45° photon line is part of a PW light path reflecting back and forth between the lab

ct-axis and the object ct -axis. Let the lab and moving frame have reflecting mirrors to receive light of a

certain frequency (for CW) or a band of frequencies (for PW) and reflect it back and forth between them.

If mirror-1 sends out wavelength 0, mirror-2 sees it as a Doppler red-shifted wavelength 1 = 0e

that it promptly returns to mirror-1 who sees another red-shift factor e  tacked on to give 2 = 1e = 0e
2 .

Locally observed refection times k and reflected wavelengths k both form geometric series …1, f, f
2
, f

3
,…

k =(… 0, 1, 2, 3, …) =(… 0, f 0, f
2

0, f
3

0, …) = 0(…1, f, f
2
, f

3
, …) (7.10a)

k =(… 0, 1, 2, 3, …) =(… 0, f 0, f
2

0, f
3

0, …)= 0(…1, f, f
2
, f

3
, …) (7.10b)

Resulting space-time zigzag paths in Fig. 7.8a have even “zig” reflections (k=…0, 2, 4,…) off the

stationary lab mirror-1 and odd “zag” reflections (k=…1, 3, 5,…) off mirror-2. Fig. 7.8b has added counter-

propagating odd-time “zag” and even-time “zig” reflections to frame rectangular diamond-k whose 1
st
 and

3
rd

 bases lie at time k for lab mirror-1 and mirror-2. Its 2
nd

 and home base lie on a line of rapidity half that

of mirror-2 with red-shift e /2
= f=2

1/2 in Fig. 7.8b. Diamond-k 2
nd

-base is home base for diamond-(k+1).

The space-time analog of “rocket” relations (7.2) is k+1/ k=e+ = k/ k-1. Reflection path-nets also

have half-sum-and-difference relations analogous to (7.3) and geometric mean relations k= ( k+1· k-1).

This is used to slice reflection time intervals into units of 21/2
0 or 21/4 0 as is done in Fig. 7.8b, and this

gives lines of rapidity /4, 2 /4,3 /4, and , with red-shifts 21/4, 22/4, 23/4, and 2, respectively.

Ideal light bounces in Fig. 7.8 and mass bounces in Fig. 6.7 of Unit 1 share some key properties.

While they change energy without limit, both conserve action perfectly. For a light cavity made of mirror-

1 and mirror-2, action is an integral number n of 1/2-waves that is shown for n=4 in Fig. 7.8b where CW

nodes move /n faster than the one behind and /n slower than one ahead. Adiabatic n invariance is the

rule for quantum wave systems and applies to photon number N, too. But, rules are made to be broken!
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Chapter 8. Wave Frame Acceleration

Here we turn the hyperbola geometry of space-time Fig. 7.8 on its side to expose an accelerating wave

frame made by CW, PW, or intermediate wave fields. This provides a coherent interference view of the

Einstein elevator gedankken (thought) experiment. Like many such experiments of imagination, there are

quite a few practical details left out. So it may be some time before we can actually do them!

Chirping and Einstein elevators

A spacetime version of Compton nets are curved coordinates for accelerated Einstein elevators and

this helps to visualize equivalence principles for general relativity.
xxii

 Plots in Fig. 8.1 and Fig. 8.2 show

waves from chirping tunable lasers forming colorful renderings of hyper-net coordinates.

A previous Fig. 2.2c plotted an atom (x ,ct )-view of it running head-on at rapidity  into a green -

beam that is blue ( e+ ) shifted while the receding laser appears red ( e ) shifted. The laser (x, ct)-grid

then appears as a -tipped Minkowski grid. If instead the lasers had been tuned to frequencies e  and

e+ , respectively, the (u=ctanh )-moving atom would see beams of green light waves interfering to

make a square ( =0) Cartesian (x, ct)-grid like Fig. 2.1c. (Amplitude would also be tuned along with

frequency if we wanted to squelch the wave galloping shown in Fig. 6.2 and Fig. 6.3.)

Varying tuning parameter  of the lasers changes local grid rapidity  at the beams’ spacetime

intersection as sketched in Fig. 8.1a-b. This produces a curved space-time coordinate system of paths with

rapidity changing just so both beams end up always the same color on any given trajectory.

Each trajectory plotted in Fig. 8.2 has its own constant proper acceleration g and local color . A

mass M following such a x(t)-path has a K that follows its M-hyperbola in Fig. 7.7. The lasers each send

waves that meet at each trajectory point x(t) and paint a local interference grid of varying rapidity  on a

trajectory x(t) of varying velocity u(t) given by (6a) and sketched in Fig. 8.1a.

u =
dx

dt
= ctanh (8.1)

Setting x =0 and t =  in (2.21) relates proper time interval d  to lab dt . This gives x(t) by -integrals.
dt

d
= cosh (8.2a) 

dx

d
=

dx

dt

dt

d
= c tanh cosh = c sinh (8.2b)

 ct = c cosh   d    (8.2c) x = c sinh   d   (8.2d)

Path x(t) depends on ( ) variation in proper . Linear rate u~g  or =g /c gives a hyperbolic path in

Fig. 8.1b of fixed proper acceleration g and a family of concentric paths of different g in Fig. 8.2.

ct = c cosh
g

c

 

 
 

 

 
   d  =

c2

g
sinh

g

c

 

 
 

 

 
  (8.3a) x = c sinh

g

c

 

 
 

 

 
   d  =

c 2

g
cosh

g

c

 

 
 

 

 
 (8.3b)

Paths closer to the left hand blue-chirping laser have a higher g than flatter ones nearer the red-chirping

right hand source.  -skewed baseball diamonds of PW and CW paths in lower Fig. 8.2 are spaced

geometrically along the x-axis of a spaceship at a moment when its lab-relative rapidity is =0.2.
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Fig. 8.1 Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g.

Geometric e± -variation (8.3) of wave and coordinate spacing is due to a left-hand laser’s right-

moving wave of frequency = 0e
+  on light cone x =x-ct=x0e  and a right-hand laser’s left-moving wave

of frequency = 0e  on light cone x =x+ct=x0e
+ . Wave interference does the rest.

Initial ( =0) position of hyperbola 0 is 0=x0=c
2
/g0. Each hyperbola has different but fixed location

, color , and artificial gravity g that, by (8.3), are proper invariants of each path.

 x2
-(ct)

2
 = 

2 , where: =c
2
/g (8.4)

Frequency  and acceleration g vary inversely with the path’s proper location  relative to origin.

   =  c
2
/g = 0 c

2
/g0 = const. (8.5)

Rapidity =g /c in (8.3) has proper time be a product of hyperbolic radius  in (8.4) and “angle” .

  c  =  c
2
/g =       (8.6)

This is analogous to a familiar circular arc length formula s = r . Both have a singular center.

The less familiar hyperbolic center (x,ct)=(0,0) here begins an elementary event horizon. The blue-

chirp laser would need infinite frequency 0e
+  at origin where ct=e  goes to zero, so it gives up before

t=0. After t=0, light from the laser to any path S or T given by (8.3) never arrives. Fig. 8.2 shows paths of

a spaceship S and a “trailer” T trailing by invariant length ST= (S)- (T) on an x-axis of rapidity  through

origin (x,ct)=(0,0). S and T always have the same velocity (8.1) relative to the lab, maintain proper

interval
 ST , but trailer T feels greater g. Lower parts of a rigid rod accelerate more, and this gives the lab-

observed Lorentz length-contraction indicated at the top of Fig. 8.2.

In a Newtonian paradigm, asymmetric acceleration seems paradoxical, but if waves make a

coordinate frame, asymmetry is a consequence of the DeBroglie relation (4.5b) between k-vector and

momentum. Accelerating frames require shortening wavelength and this crowds waves.

Wave properties also manifest the accelerated frames’ upstairs-downstairs disparity in proper time

 (“later” upstairs by (8.6)) and shift in frequency  (lower or “red shifted” upstairs by (8.5)). Along nodal

(white) lines that are the ship-trailer x-axis for a momentary rapidity , wave phase is seen to be some
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constant k = /2. The Einstein equivalence of gravity to an accelerated elevator is manifested by a

gravitational red shift and an increase of clock rates in the upstairs regions of a field.

A quantized version of Fig. 8.2 would be an atom with a transition at I, undergoing a sequential

resonant Compton scattering of exponentially chirped photons I, e
±

I, e
±2

I, e
±3

I,… between the same

pair of hyperbolas in Fig. 8.2. The atom sees the same color and feels the same recoil rapidity at each step

in the quantum version of constant acceleration.

     = 0.4

 = 0.4

Trailer has received  10
    blue waves.

Trailer has received  5
    blue waves.

Coherent waves make space-time coordinates of accelerating ship & trailer(s)
event horizon

Lab view of
Lorentz
contracting
separation

Ship view of
invariant
proper
separation
l = 0.4

Ship has received  5
  green waves.

Geometrical Chirps Gives Accelerated  Minkowski Grids

Ship has received  10
 green waves.

Interfering light beams make Minkowski diamonds

Bouncing light
 Doppler shifts

from moving
 mirror       .

  BLUE-
   CHIRP
    spectrum
     results if
       mirror
        moves
         IN

        RED-
      CHIRP
    spectrum
    results if
         mirror
           moves
              OUT

x or �-axis for rapidity ρ=0.2

TIME

TIME

Bouncing light
 Doppler shifts

from moving
 mirror       .

�

Fig. 8.2 Accelerated reference frames and their trajectories painted by chirped coherent light

Constant velocity gives constant acceleration

This leads one to ask if chirped light might be used for atomic or molecular acceleration. Logarithmic

dependence =ln b of rapidity on Doppler b favors ultra-precise low energy acceleration, more appropriate

for nanotechnology than high-energy acceleration with its extreme bandwidth.
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The flip symmetry between two sides of a light cone suggests optical cavities with a geometric

chirp. If you flip the diamond sequence in lower Fig. 8.2 across the light cone to the sides of Fig. 8.2 you

get spacetime light paths bouncing between mirrors moving relative to each other as analyzed in Fig. 7.8.

As mirrors close, trapped light blue-chirps exponentially as on the right side in Fig. 8.2. It red-

chirps if the two mirrors separate as they do on the left side of Fig. 8.2 and in Fig. 7.8. Together, a desired

e
±n

 spectrum could in principle be made by translating one etalon cavity at constant velocity relative to

another stationary cavity that is enclosed by the translating one. In this way, light generated by mirrors of

constant velocity provides the spectrum needed to make an interference net of constant acceleration.

Coherent acceleration like Fig. 8.2 (but slower) might be done with precision needed for laser metrology.

Wave geometry vs. Newton

Wave geometry ought to make us more skeptical of the coordinate boxes and manifolds that have

been our paradigm for centuries. A common image is the Newton-Descartes empty-box at some absolute

time existing whether or not it contains any “particles.” We first learn to picture spacetime coordinates as

a giant metal frame of clocks like Fig. 9 in Taylor and Wheeler’s
xxiii

 relativity text. That figure is more like

a parody of common views of spacetime manifolds that remain with us to this day. Such a monstrosity of

a framework is decidedly nonexistent and non-operational. Current metrology uses light waves.

 A wave frame like Fig. 2.1, Fig. 2.2, or Fig. 8.2 is physical metrological coordinate system whose

geometry and logic arises from the light that makes it. The things being coordinated (waves) have their

own coordinates and dynamics built in. Einstein general theory of relativity trumped Newton’s box by

showing how it is affected (curved) by any energy or mass it holds. Quantum theory seems to go a step

further by indicating that this box and its contents should be viewed as one and the same thing.

Pair creation and quantum frames.

Dirac, before others, realized that per-spacetime has the symmetry of spacetime. Past and future

(time-reversal) symmetry demands negative frequency as well as positive. In order to visualize Dirac’s

pair-creation process we extend the playing field to back-to-back baseball-diamonds with four nets of

invariant hyperbolas. Examples of pair-creation are sketched in Fig. 8.3 as seen from two different

reference frames. Pair creation-destruction is then seen a strange sort of Compton process in which the

“photon diamond” of Fig. 7.4 is centered at the light baseline intersection with 2
nd

 base at +mc
2 and home

base at -mc
2 and 1

st
 and 3

rd
 bases on ±G-hyperbolas.

The Feynman graph of Compton scattering in Fig. 7.6c-d is turned on its side in Fig. 8.3 so it may

start and end on different branches of the m-hyperbola corresponding to mass ±m. Two photons, whose

energy sum equals the energy gap 2mc
2
, appear to bounce off intermediate hyperbolas in Fig. 8.3 that are

conjugate hyperbolas defining group wavevectors Kg in Fig. 2.1 or 2.2. Such dispersion is said to belong

to instanton or tachyon waves of imaginary frequency ±i
 
μ that entails a huge damping factor  e

mc2 /  that

proscribes their direct observation. They are said to be in the virtual or intermediate realm.
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ck

ω

ck

-mc2/h

+mc2/h

Fig. 8.3 Dirac matter-antimatter dispersion relations and pair-creation-destruction processes.

Dirac’s is the first quantum theory to fully incorporate relativity. It introduces dual anti-worlds, in

which all three mass definitions (3.6), (3.7), and (3.9) have negative values, but leaves many questions

about their physical meaning. Analogies between the (2 e + e )  process in Fig. 8.3 and exciton

formation in the band theory of solids, shed some light on the physics. However, the exciton process is a

straight-up 1-photon process whose momentum is tiny compared to the energy jump, and it lacks the

world-anti-world symmetry of the Dirac exciton in which both the electron and an anti-electron have the

same group velocity but opposite momentum. The Dirac model has duality of reversed energy

(frequency), momentum (k-vector), space, and time that is quite extraordinary.

A number of implications of Dirac’s theory have been mostly ignored. There is an unwillingness

to abandon vestigial concepts associated with absolute classical frames, manifolds, or “boxes.” However,

quantum frames are like all things quantum mechanical and have an intrinsic relativity associated with

their wavelike interference. Quantum frames, as they are used in molecular and nuclear physics, are

known to have internal or body-relative parts in addition to the more commonly known external or

laboratory-relative parts. This inside-and-out duality is a deep quantum mechanical result arising first in

the theory of quantum rotors by Casimir, but it also underlies Lorentz-Poincare symmetry that includes

locally rotating frames as well as translating ones.

Indeed, the quantum theory of angular momentum has a built-in duality that is as fundamental as

the left-and-right or bra-and-ket duality of the conjugate parts of Dirac’s elegant quantum notation A B .

The Wigner Dm,n
J –functions are quantum rotor wavefunctions Dm,n

J* ( )  that have their external laboratory

m-quantum numbers on the left and their internal or body n-quantum numbers on the right. Their J-

multiplicity is thus (2J+1)-squared and not simply the (2J+1) so familiar in elementary Schrodinger

quantum theory of atomic angular momentum.

It took many years for classical physics to fully accept Einstein’s translational relativity principles.

Perhaps, if the wave nature of quantum physics had already been established, the relativistic axioms
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would have been seen as an immediate consequence of wave interference. Indeed, these two subjects are,

perhaps, too closely related for that to have happened.

Now quantum theory demands a more general kind of relativity involving rotation and other

accelerations that is a step beyond the special relativity of constant velocity. This brings up a quite

controversial area first explored by Ernst Mach, the originator of Mach’s Principle. Mach made the

seemingly impossible proposal that centrifugal forces, the kind physicists assign the label ficticious force,

are somehow due to their relativity to all matter in the universe.

Mach’s idea may sound silly, but a kind of quantum Mach’s Principle is needed to understand

spectra and dynamics of quantum rotor D
m ,n
J waves even in the non-relativistic limit. We are unaware of

any fully relativistic quantum treatment of such systems, and it is not clear what if anything would be the

cosmological implication of such a grand relativistic quantum wave mechanics. Nevertheless, it seems

that the dual 4-by-4 wave-anti-wave space of Dirac is one of the first to re-examine.

Physics is still at a stage where large-scale phenomena use Newton-Einstein particle-in-manifold

theory while small-scale phenomena employ Planck-DeBroglie-Schrodinger wave field theory. However,

both employ some form of space and time coordinates. In this they share an enigma whose existence is

largely unquestioned. Supposed invariance to reference frame definition is taken to mean that underlying

frames don’t matter.

That leaves our fundamental metrology in a dysfunctional dysphoria of an ignored spouse,

indispensable, but having only marginal identity. If Evenson and Einstein have taught us anything, it is

that this has to be a mistake. Frames do matter! The results of Dirac and many others have shown they

make matter and indeed are our matter.
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-- The Purest Light and a Resonance Hero – Ken Evenson (1932-2002) --
When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung hero

who, alongside his colleagues and students, often toiled 18 hour days deep inside a laser laboratory lit

only by the purest light in the universe.

Ken was an “Indiana Jones” of modern physics. While he may never have been called “Montana

Ken,” such a name would describe a real life hero from Bozeman, Montana, whose extraordinary

accomplishments in many ways surpass the fictional characters in cinematic thrillers like Raiders of the

Lost Arc.

Indeed, there were some exciting real life moments shared by his wife Vera, one together with Ken

in a canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such outdoor

exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that profoundly

enriched the world.

Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness

Book of Records. The listings are not for jungle exploits but for his lab’s highest frequency measurement

and for a speed of light determination that made c many times more precise due to his lab’s pioneering

work with John Hall in laser resonance and metrology
†
.

The meter-kilogram-second (mks) system of units underwent a redefinition largely because of

these efforts. Thereafter, the speed of light c was set to 299,792,458ms
-1

. The meter was defined in terms

of c, instead of the other way around since his time precision had so far trumped that for distance. Without

such resonance precision, the Global Positioning System (GPS), the first large-scale wave space-time

coordinate system, would not be possible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories in

the National Bureau of Standards (now the National Institute of Standards and Technology or NIST) are

legendary as are his railings against boneheaded administrators who seemed bent on thwarting his best

efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-insulator diodes,

and succeeded in literally counting the waves of near-infrared radiation and eventually visible light itself.

Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-precise

atomic and molecular wave and pulse quantum optics continue to advance and provide heretofore

unimaginable capability. Our quality of life depends on their metrology through the Quality and Finesse

of the resonant oscillators that are the heartbeats of our technology.

Before being taken by Lou Gehrig’s disease, Ken began ultra-precise laser spectroscopy of

unusual molecules such as HO2, the radical cousin of the more common H2O. Like Ken, such radical

molecules affect us as much or more than better known ones. But also like Ken, they toil in obscurity,

illuminated only by the purest light in the universe.

In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch
††

 for laser optics

and metrology.

† K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall,

Phys. Rev. Letters 29, 1346(1972).

†† The Nobel Prize in Physics, 2005. http://nobelprize.org/
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Kenneth M. Evenson – 1932-2002
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Figure Captions
Fig. 1. Comparison of wave archetypes and related axioms of relativity.

(a) Pulse Wave (PW) peaks locate where a wave is. Their speed is c for all observers.

(b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)

Fig. 2. Pulse Wave (PW) as a sum of 12 Fourier CW’s (a) PW parts: real Re , imaginary Im , and magnitude | |.

(b) CW phasor clocks plot real vs. imaginary parts of wave amplitude  .

Fig. 3. Wave addition of counter propagating Fourier components.
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(a) 2-PW Sum has binary sum has 4 values (0,0), (0,1), (1,0), (1,1) and diamond grid of peak paths on a plane of zeros.

(b) 2-CW Sum and interference has value continuum and square grid of zeros.

Fig. 4. “Ficticious” sources and their wave coordinate lattices in (a) Spacetime and (b) Per-spacetime.

CW lattices of phase-zero and group-node paths intermesh with PW lattices of “particle” or pulse wave paths.

Fig. 5. Co-propagating laser beams produce a collapsed wave lattice since all parts have same speed c.

Fig. 6. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d).

Fig.7. Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.

Fig. 8. Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is

inscribed in the (dashed) circle of the phasor moving relative to the fixed one.

Fig. 9. Doppler shift b-matrix for a linear array of variously moving receiver-sources.

Fig. 10. (a) Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 10. (b) Geometry for the CW wave coordinate axes in Fig. 7.

Fig. 11. (a) Horizontal G-hyperbolas for proper frequency B=v and 2B and vertical P-hyperbolas for proper wavevector k.

(b) Tangents for G-curves are loci for P-curves, and vice-versa.

Fig. 12. Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.

Fig. 13. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian.

Fig. 14. “True” paths carry extreme phase and fastest phase clocks. Light-cone has only stopped clocks.

Fig. 15. Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.

Fig. 16. Trigonometric geometry (a) Unit circular area =0.86. (b) Unit hyperbolic area =0.99.

Fig. 17. Relativistic wave mechanics geometry. (a) Overview. (b) Details of contact transform tangents.

Fig. 18. Monochromatic (1-frequency) 2-CW wave space-time patterns.

Fig. 19. Dichromatic (2-frequency) 2-CW wave space-time patterns.

Fig. 20. (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 18. (h-i) Kepler anomalies.

Fig. 21. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.

Fig. 22. Optical cavity energy hyperbolas for mode number n=1-3 and photon number Nn=0, 1, 2,....

Fig. 23. Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).

Fig. 24. Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering

Fig. 25. Compton scattering. (a) Vector sums on mass hyperbolas of low  , medium m , and high h.

(b-c) Feynman graphs. (d) Center of Momentum (COM) vector sums. (e-f) COM Feynman graphs.

Fig. 26. Compton nets are congruent Compton staircases of transitions. (a) f=2:1 (b) f= 2 :1.

Fig. 27. Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g.

Fig. 28. Accelerated reference frames and their trajectories painted by e
±

-chirped coherent light.

Fig. 29. Dirac matter-antimatter dispersion relations and diagrams of pair-creation-destruction processes.
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